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Abstract—Microservices architecture has been praised as a
lightweight, modular and robust alternative to monolithic soft-
ware in recent years with software containerization bringing
parallel ideas to the table against bare metal and even virtual
machine based software deployment solutions. While containers
provide support for agile software development in the cloud, they
suffer from security issues due to their lightweight structure not
providing isolation as strong as that of virtual machines. This
calls for the development of robust intrusion detection systems
(IDS) for containers, taking into account their specific vulnerabil-
ities. Existing IDS for containerized software deployments have
mainly used host-based syscall monitoring, with only a few
utilizing network-based monitoring without justification for the
particular sensor used. In this paper, we aim to close this research
gap by empirically evaluating the performances of system call and
network flow based features in machine learning-based intrusion
detection for containers when subjected to the same attacks. Our
results show that basing the IDS on the network layer exhibits
better performance than the host-based IDS for the investigated
vulnerabilities, demonstrating the need for network monitoring
for enhanced container security.

Index Terms—Containers, IDS, Cloud Computing, Microser-
vices, Network Security
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I. INTRODUCTION

Advances in cloud computing systems in recent years have
led to the development of applications based on the microser-
vices architecture to meet the high performance requirements
of the systems on the cloud. This architecture includes a
complex application structure that consists of services that
exist as independent entities and interact with each other
through specific APIs. Microservices architecture frequently
uses a structure called container, which is more lightweight
than virtual machines in the cloud [1]. The rapid adoption of
cloud technologies experienced in recent years has led to the
widespread use of container-based application structures. Fur-
thermore, the proliferation of container networks has revealed
the potential of exposing these networks to many cyberattacks
caused by the malicious capture of endpoints. In addition to
attacks that affect legacy application systems, containers are
vulnerable to attacks peculiar to them due to the differences
in their working mechanism, such as the dynamic building
of images. Aware of the fact that containers will form the
backbone of many systems including increasingly virtualized
networks such as 5G and beyond, it is of utmost importance
to ensure robust security practices for these systems.

Despite the plethora of work in intrusion detection systems
(IDS) for legacy systems, automated attack detection and
prevention for containers and container networks have not
been sufficiently explored in the research literature or real-
world applications. As in the case for general IDSs, we can
use host-based or network-based approaches or a combination
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of them for detecting intrusions on container-based application
systems.

Unix-based operating systems separate user threads and
kernel threads, where only the kernel has direct access to
the hardware. User processes use system calls (syscalls)
with a well-defined interface to use kernel level privileged
instructions. As these instructions are present whenever a
process reads or writes data from and to the disk or sends
or receives data through the network, it offers a valuable
source for inspection. A majority of the existing approaches
for container security have favored monitoring syscalls,
often with the use of the Sysdig [2] tool over monitoring the
network packets from and to the container networks. However,
to the best of our knowledge, no study has advocated for their
choice of monitoring syscalls over network packets for
their intrusion detection frameworks or vice versa.

In this paper, we perform an analysis of approaches utilizing
syscall data and network flow data for detecting attacks
on containers using machine learning (ML) algorithms with
proven success in intrusion detection tasks. This paper makes
the following contributions to the literature on container secu-
rity:

• We present reproducible steps towards generating a
dataset consisting of benign and malicious traffic gen-
erated through interactions with real-world vulnerable
container images discovered using the Common Vul-
nerabilities and Exposures (CVE) database [3], which
includes both system call and network flow data.

• We provide an empirical comparison of ML-based intru-
sion detection approaches for containers using network-
based monitoring and host-based monitoring.

The remainder of this paper is structured as follows: In
Section II, we provide a brief overview of related work in
the field of container security. Section III provides necessary
background information on IDS and virtualization. Section IV
describes our container IDS approach, providing details
on data collection and processing using ML algorithms.
Section V provides details of our experimental setup for
evaluating the performance of the container IDS. Section VI
provides the results and discussion of the experiments
performed and Section VII concludes the paper with future
work directions.

II. RELATED WORK

The past decade has seen an increasing use of ML tech-
niques for cyberattack detection in various systems. This is
because attacks are getting more sophisticated and classical
attack signature-based solutions cannot effectively detect pre-
viously unobserved attacks. Learning algorithms such as Sup-
port Vector Machines (SVM) [4], which is a classical machine
learning model, deep learning models such as convolutional
neural networks (CNNs) [5] and autoencoders [6] achieved
quite high (over 90% in most cases) intrusion detection
rates on datasets containing traffic for legacy network and
application settings.

Effective attack detection and prevention in the cloud faces
many challenges, even in the presence of fast streaming
data analytics. Therefore, machine learning algorithms and
tools have been developed specifically for cloud environ-
ments, mostly for virtual machine-based deployments, and
achieved successful results in detecting anomalies for certain
scenarios including classical enterprise networks [7], industrial
IoT (IIoT) systems [8], and sensor data publish-subscribe
systems [9].

Despite the existence of many approaches in the field
of intrusion detection including both host-based (HIDS) and
network-based (NIDS) solutions (e.g. [10]–[14]), little atten-
tion has been paid to IDSs for containerized environments.
Table I provides a summary of previous studies on intrusion
detection for containerized environments. We present the sur-
veyed works according to the target applications they used to
perform attacks on, the choice of the benign traffic source they
used to train their models, how they performed the attacks and
finally the monitor they used.

Tien et al. [20] introduced an HIDS aimed for a Ku-
bernetes cluster, the leading container orchestration frame-
work. Using supervised learning methods, they developed an
anomaly classification model which they named KubAnomaly.
KubAnomaly is a neural network model with four fully
connected layers; the first three layers utilize exponential linear
units (ELU) and the last layer utilizes softmax as the activation
function. To create a dataset for training their models, they
used system calls and root directory access features, which
takes place when the container accesses a file under the root
directory (e.g. bin, var).

Flora et al. [19] proposed using attack injection on a
containerized MariaDB database and the workload of the
TPC-C database transaction benchmark [23] to evaluate their
HIDS’s performance. They used 3 algorithms and represen-
tations; sequence time delaying embedding (STIDE), Bags of
System Calls (BoSC) and Hidden Markov Models (HMM) and
performed their evaluations on Docker and LXC containers.
To compare the performance of the HIDS on the containerized
environment, they also performed evaluations on a pseudo bare
metal installation, using a KVM Virtual Machine.

Tunde-Onadele et al. [21] combined signature-based and
anomaly-based approaches in their HIDS. They evaluated
common intrusion detection methods for containerized envi-
ronments. Srinivasan et al. [15] proposed a real-time HIDS
using system calls. They fed n-grams of system calls to
Maximum Likelihood Estimator (MLE) and Simple Good
Turing (SMG) to do real-time classification. Cavalcanti et
al. [18] evaluated the effectiveness of 8 machine learning
algorithms for IDS on containerized environments. They made
use of the BoSC approach to create their dataset and evaluated
these algorithms on this dataset. Chen et al. [24] proposed a
framework named Informer. This framework is used to detect
chains of anomalous Remote Procedure Calls (RPC), which
are used for communication between agents in a microservices
architecture.

All the approaches mentioned above have either focused on



TABLE I
CONTAINER SECURITY APPROACHES

Author Target Application(s) Benign Traffic Source Malicious Traffic Source Monitor
Srinivasan et al. [15] DVWA [16] unknown sqlmap strace
Abed et al. [17] MySQL mysqlslap sqlmap strace
Cavalcanti et al. [18] MySQL TPC-C Benchmark TPC-C Benchmark Sysdig
Flora et al. [19] MariaDB TPC-C Benchmark PoC code from exploit-db.com Sysdig
Tien et al. [20] unknown JMeter JMeter, sqlmap, OWASP ZAP Sysdig, Falco
Tunde-Onadele et al. [21] various programs Burp Suite, JMeter JexBoss, Metasploit, PoC code,

sqlmap, Burp Suite
Clair, Sysdig

Röhling et al. [22] MariaDB various tools various tools Sysdig

host-level features or network-level features, with the majority
using host-level features. Our work in this paper differs from
the surveyed works in that we analyze both system call-based
and network flow-based approaches for intrusion detection on
the same attack simulations that we performed on vulnerable
containers.

III. PRELIMINARIES

A. Intrusion Detection Systems (IDS)
In computer network security, an intrusion is an unautho-

rized access or an attempt to access confidential or sensitive
data or resources of a system. These resources can include
data, network or hardware elements. Intrusion detection is
the collective process which includes monitoring, detection
and reporting of intrusions on a target system or network
of systems [25]. An IDS uses sensors to gather and collate
relevant data such as network flows and system calls.

IDSs are categorized according to the set of sensors they
use; a Host-based IDS (HIDS) monitors the computer in-
frastructure with parameters like CPU usage, RAM usage,
and syscalls whereas a Network-based IDS (NIDS) tracks
the network traffic in order to detect intrusions [26]. In a
computing system, there are many resources that can be used
to build an HIDS [26]. Some examples are syscalls, log
files, file integrity checksums etc.

IDSs can also be classified as signature-based IDSs,
anomaly-based IDSs and hybrid IDSs. In a signature-
based IDS, system behavior is monitored, and this behav-
ior is matched against known attack signatures. However, a
signature-based IDS is not capable of detecting previously
unseen (i.e. zero-day) attacks. Furthermore, when a signature-
based IDS is used in a containerized environment and proper
care is not taken, dependencies between Docker images may
result in vulnerability propagation from the base image to the
child image [27]. Anomaly-based IDSs monitor the system and
detect any abnormal behavior. While these IDSs can detect
zero-day attacks, they have the risk of tagging an unseen
benign behavior as malicious. Hybrid IDSs, on the other hand,
incorporate ideas from both of these approaches to tackle the
discussed drawbacks.

B. Virtualization
Virtualization is an intrinsic component of modern data

centers and cloud environments to decouple applications from

the hardware they are hosted on. There are two main ways of
achieving virtualization; hardware virtualization and operating
system (OS) level virtualization. In this paper, we are par-
ticularly interested in containers, which use OS-level virtual-
ization. OS-level virtualization leverages the OS kernel rather
than the physical hardware itself. The OS kernel undertakes the
responsibility to implement container abstraction by allocating
CPU shares, memory, network I/O, and managing file system
isolation.

Linux containers benefit from two main kernel features:
Control groups (cgroups) and namespaces [28]. cgroups man-
age resource allocation among processes which can belong
to different groups. All major resource types (CPU, memory,
network, block I/O) have their corresponding cgroups to
manage resource limits. Namespaces enable resource isolation
among several container instances. The Linux kernel provides
process ID, user ID, file system mount points, networking,
inter process communication (IPC) and host name namespaces.
Since the kernel is shared among native containers, an exposed
container can further exploit kernel vulnerabilities and get
access to other containers, which means shared kernel design
cannot isolate kernel vulnerabilities [29].

IV. CONTAINER IDS APPROACH

The core of any intrusion detection system is the tools and
techniques to efficiently monitor and analyze system behavior.
For our container IDS approach, we continuously monitor ap-
plications running on containers and process the data resulting
from user/service interactions. We use an ML approach for
detecting intrusions rather than a rule-based approach due to
the high generalizability ML algorithms provide. In order to
train our ML models, we need both the normal behavior of the
system over a period of regular user activity and the anomalous
behavior that arises during an attack. We collect the behavior
traces during both benign and malicious traffic in a sanitized
environment to label the data trivially and to ensure that the
intrusion detection system is trained on noise-free data. Data
is pre-processed at the beginning of the ML pipeline since,
depending on the monitoring tool, the output is in different
formats and not readily suitable for ML algorithms.

In this study, we use features extracted from syscalls
and network traffic data. syscalls are present for every
meaningful interaction between the user and the software



inside the container, whereas network traffic results from
the interactions between the cloud services and users. With
our syscall monitor of choice, every syscall from the
userland to the kernel is logged with timestamps. We can
process these logs to get frequency features over a window of
time. On the other hand, by using network traffic monitoring,
we can examine every packet “on the wire” and then collate
that information into “flow” features. Flow features contain
aggregate information such as the duration of network commu-
nication for a given request. We further explain the collection
of raw network packets and syscalls and the extraction
of network flows and syscall frequency in the following
subsections.

A. Training Data Generation

IDS literature has two options to evaluate their proposed
methods: using publicly available datasets of real-world traffic
to replay them on the target network or generating malicious
and benign traffic using automated tools [30]. Considering
that IDSs are deployed in the real world and used to detect
real-world attacks, artificial datasets that the literature uses to
build these IDSs should be as realistic as possible. Choosing
the traffic generation approach entails certain characteristics in
order to make the resulting dataset and the resulting evaluation
reliable and reproducible. In this study, we have decided to fol-
low the requirements put forth by Sharafaldin et al. [30], which
includes points such as having the complete network traffic
available in the dataset (packets originating from both source
and the destination). We have also relied on the insights given
by Viegas et al. [31] on traffic generation for IDS research.
Authors in the said work advocate for using well known
CVEs and attack tools to keep the work reproducible. They
also advise future researchers to craft realistic user traffic by
making sure that the generated user traffic is variable enough
to not follow any statistical distribution. We created our benign
user behavior and performed our malicious attacks according
to the works mentioned above. To create valid benign network
traffic, requests to the server had to be varied in both content
and frequency. Also, only valid request-response pairs had
to be generated. While evaluating the dataset, environment-
specific variables were not considered as features, e.g. no
detection was made using the IP address of the attacker [31].

B. Machine Learning Algorithms

In this study, we used varieties of Decision Trees and SMO,
a variant of Support Vector Machines (SVM), for the intrusion
detection problem.

A decision tree (DT) is a common machine learning ap-
proach with no hyperparameters for both classification and
regression problems. The decision trees’ structure resembles
a flowchart, with each internal node standing in for a test
condition, each branch for the result of the test condition, and
each leaf node for a class label, which indeed is a decision
taken after computing all attributes. Classification rules are
represented by the routes from root to leaf. A well-known
decision tree algorithm is C4.5 [32].

For the remainder of this section, we explain the machine
learning algorithms we used in detail and note the configu-
rations with which we ran the algorithms on the WEKA ML
framework, which is discussed in Section VI-A.

1) REPTree: A Fast Decision Tree learner [33] (REPTree)
constructs either a classification or a regression tree with
information gain (IG) (Eq. 1) as the splitting criterion and
reduced error pruning is used to prune the tree with backfitting.

IG(S, X) = Entropy(S)−
∑
x∈X

|Sx|
|S|

Entropy(Sx) (1)

Where S is the training set (or the dataset), X is a column
in the training set (i.e. an attribute), and x is an element in the
attribute (column) vector X . Sx is a subset of S such that all
training points therein satisfy the following condition X = x.
In other words, the value of the attribute X in the set Sx is x.

The Entropy, on the other hand, is defined in Eq. 2 as;

Entropy(S) = −
|C|∑
c=1

PS(ci) logPS(ci) (2)

Where PS(ci) is the estimated percentage of labels of
training points that belong to si < |C| in the training set
S, and |C| is the number of classes.

In this study, we used the following parameter con-
figuration for REPTree in WEKA: batchSize = 100,
initialCount = 0.0, maxDepth = -1.0, minNum = 2.0,
minVarianceProp = 0.001, numDecimalPlaces = 2,
numFolds = 3, seed = 1. We have not used pruning.

2) Random Tree: Random Tree is a supervised classifier
based on a decision tree. The algorithm is called “random”
because of the bagging paradigm; it chooses a random set of
data during the construction of the decision tree. The algorithm
is used extensively in machine learning for both classification
and regression problems. Random trees can be generated
efficiently and the combination of large sets of random trees
generally leads to accurate models.

For this model, we used the following configuration in
WEKA: batchSize = 100, maxDepth = 0.0, minNum =
1.0, minVarianceProp = 0.001, numDecimalPlaces =
2, numFolds = 0, seed = 1.

3) Random Forest: Random Forests [34] have shown to
improve the performance of single decision trees considerably,
with tree diversity created by two ways of randomization: first
the training data is sampled with replacement for each single
tree like in bagging. Secondly, when growing a tree, instead of
always computing the best possible split for each node, only
a random subset of all attributes is considered at every node,
and the best split for that subset is computed.

For this model, we used the following configuration
in WEKA: bagSizePercent = 100, batchSize
= 100, maxDepth = 0.0, numDecimalPlaces =
1, numFeatures = 0, numIterations = 100,
numExecutionSlots = 0.0, seed = 1. We did not
use impurity decrease.



4) SMO: Support Vector Machines (SVM) [35] is a
supervised classification and regression algorithm with proven
success in many tasks including intrusion detection. It maps
training examples to a coordinate space to maximize the width
of the gap between the two categories using the following
quadratic and convex objective function given in Eq. 3, where
∀i, yi(WTXi + b) ≥ 1.

min
W,b

1

2
WTW (3)

Therefore, the training process of a SVM includes solving a
quadratic programming (QP) optimization problem. Sequential
Minimal Optimization (SMO) [36] divides the large QP prob-
lem into a sequence of simple smallest possible QP problems
to be solved analytically. Therefore, SMO abstains from time-
consuming numerical QP optimization loops.

In a binary classification problem like intrusion detection,
SMO trains a soft-margin SVM by solving the QP problem
given in Eq 4;

max
a

n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

yiyjK(xi, xj)αiαj (4)

Where (xi, yi) is a training point in the dataset of size n,
αi is a Lagrange multiplier on an interval [0, C] such that
n∑

i=1

yiαi = 0. C is an SVM hyperparameter and K(xi, xj) is

a (positive-definitive) kernel function.

C. Bag-of-System-Calls

Bag-of-system-calls (BoSC) [37] is a method for represent-
ing the syscall traces of a computer or process. The repre-
sentation involves creating a frequency list S = {s1, s2, . . . , sn
where si is the number of times the syscall at that window
is observed [38]. A sliding window technique is used to
sample at time t with the sampling window defined by the
window size.

By default, the Sysdig tool captures system call traces with
every event information available and saves them to the disk.
This information can be filtered from the disk again or in a
pipeline to get suitable output for BoSC processing.

To create a frequency list, the number of available
syscalls must be known to determine the list length.
The available syscall list is constructed by first using the
appropriate syscall table with respect to the architecture of
the system from the Linux kernel. We then extend this table
further by comparing the list above with the list of syscalls
captured by Sysdig. Hence, our BoSC representation vectors
are of length n = 332. We opted to use 6 seconds for our
window size and L1 normalized the BoSC vectors.

V. EXPERIMENT DESIGN

This section describes the setup procedure of the simulation
environment and our data collection process. The generation
steps of the training data set covers both benign and malicious
traces with the simulation environment under normal traffic
and traffic during attack injection, respectively.

Fig. 1. Lab environment topology.

We used a closed-loop client with independent threads
during our evaluation. Each thread sends a logically coupled
set of HTTP requests and the next request set is not sent until
a response is received for the preceding request set.

Apache JMeter [39] is an open source software designed
to load-test functional behavior and measure web application
performance. We used JMeter to achieve the realistic workload
we defined above. Furthermore, we used the BlazeMeter1

browser plugin to record regular user behavior including
timing information, further increasing the realistic nature of
the load test recipes.

Vulnerable images were run as containers on the host
machine powered by Docker [40]. Docker is an open platform
for developing, shipping and running applications. Moreover,
it is the most widespread tool for container technology.

To find vulnerabilities and develop exploit scenarios, Ex-
ploit Database (ExploitDB)2 was used to perform attacks and
generate malicious activity. It is a CVE compliant archive of
exploits for the purpose of public security, developed for use
by penetration testers and vulnerability researchers. We also
benefited from the Metasploit Framework [41] to execute ex-
ploit code against the deployed containers on the host machine.
Metasploit Framework enables us to compare the identified
vulnerabilities to its database for accurate exploitation.

We used Sysdig to collect the system calls for the container
as a whole, due to its native support for containers. Sysdig
monitors containers at the operating system level and captures
syscalls.

We used tcpdump3 to intercept network packets both for
benign and malicious traffic. Network packets were recorded
from the beginning of the simulation until the end. Normal
user activity and attack scenarios were recorded separately.

The machine that hosted the simulation environment has
an Intel Core i7-11700 CPU at 2.50GHz with 16GBs of

1https://www.blazemeter.com/
2https://www.exploit-db.com/
3https://www.tcpdump.org



TABLE II
VULNERABILITIES USED

Application
(version)

CVE CWE

rConfig (v3.9.2) CVE-2019-16662 CWE-78
rConfig (v3.9.2) CVE-2019-19509 CWE-78
rConfig (v3.9.2) CVE-2020-10220 CWE-89

RAM, running Ubuntu 20.04. We used the same machine
for our machine learning algorithm evaluations as well. The
overall topology is presented in Figure 1. The simulation
environment machine hosts the Vagrant box (Ubuntu 20.04)
and the vulnerable docker image. JMeter and Metasploit are
run from the Vagrant box whereas tcpdump and Sysdig are
ran on the host machine.

A. Vulnerable Image Selection

Common Weakness Enumeration (CWE)4 is a common
standard for classifying possible causes of exploits in software.
CVEs are the resulting vulnerabilities, which stem from a
particular CWE. To have a diverse set of attacks, we looked up
container images that contain multiple CVEs, each belonging
to a distinct CWE. We also leveraged the ExploitDB and
Metasploit modules to access the exploit scenarios for those
CVEs. We then filtered further for compatible images that can
be accurately monitored in a realistic workload with JMeter.
All in all, we decided on using rConfig [42] version 3.9.2
with the following CVEs.

B. Exploited Weakness Types

1) CWE-78 (OS Command Injection): To exploit CVE-
2019-166625, since rootUname parameter is passed to
the exec function without filtering, we send a GET re-
quest to ajaxServerSettingsChk.php by setting the
rootUname parameter as a system command that we want
to execute in the system.

To exploit CVE-2019-195096, similar to the first exploita-
tion, we sent a GET request to ajaxArchiveFiles.php
by setting the path parameter system command that we want
to execute in the system.

2) CWE-89 (SQL command Injection): The web inter-
face of this image is vulnerable to SQL command injection
through the commands.inc.php searchColumn param-
eter. Thus, for exploiting CVE-2020-102207, we inject a SQL
command to the system via the searchColumn parameter.

C. Data Collection

During our experiments, we monitored both the network
traffic and system calls on the host, then evaluated our models
using both kinds of data. We explain the generation process
of these datasets in the subsections below.

4https://cwe.mitre.org
5https://nvd.nist.gov/vuln/detail/CVE-2019-16662
6https://nvd.nist.gov/vuln/detail/CVE-2019-19509
7https://nvd.nist.gov/vuln/detail/CVE-2020-10220

Fig. 2. Evaluation pipeline.

1) Network Data Collection: Alongside network traffic,
payload is also present in the packet-based network traffic
whereas flow information on the network traffic consists
of only the cumulative information about requests and re-
sponses [43]. Our work utilizes the latter one.

2) System Call Collection: Our literature search presented
us two widely used tools to monitor system calls. The first
is strace8, a Linux tool that is used to trace system calls
and signals. The other is Sysdig [2], an open-source system
monitoring tool. Our work used Sysdig due to the insights
presented by Röhling et al. [22]; efficiency and being non-
blocking compared to strace.

D. Flow Extraction

A set features collected from a series of network packets
are said to belong in a flow [44]. To extract the features from
the intercepted packages which are in pcap file format and
get flow information, we used the up-to-date fork of the open
source CICIDSFlowMeter tool [45]. The tool extracts more
than 80 network traffic flow features.

E. Feature Preprocessing

Since our malicious traffic and benign traffic are captured
in separate instances, we labeled the data by hand, 1 for mali-
cious, 0 for benign. Some flow features were taken out of the
dataset, as they have minimum entropy, i.e. all training points
gave almost the same values. Furthermore, some features were
taken out since they do not carry generalizable information
such as source IP address and destination IP address. All in
all, we removed: Flow ID, Src IP, Dst IP, Timestamp, Flow
Bytes/s and Flow Packets/s, Fwd URG Flags, Bwd URG Flags,
URG Flag Count, CWR Flag Count, ECE Flag Count, Subflow
Fwd Packets, and Subflow Bwd Packets.

We transformed the label attribute from numeric to nominal
so that we can have a detailed and elaborated summary in
WEKA.

VI. EVALUATION AND RESULTS

We present our evaluation pipeline that we used in the
experiments in Figure 2. We trained our ML models using
WEKA described in Section VI-A and performed experiments
with multiple models as discussed in Section IV.

8https://man7.org/linux/man-pages/man1/strace.1.html



TABLE III
RESULTS OF THE EVALUATION ON NETWORK FLOW DATA

Model TP Rate FP Rate Precision Recall F-Measure Label

REPTree 1.000 0.002 1.000 1.000 1.000 Benign
0.998 0.000 0.999 0.998 0.999 Malicious

Random Tree 1.000 0.003 1.000 1.000 1.000 Benign
0.997 0.000 0.999 0.997 0.998 Malicious

Random Forest 1.000 0.002 1.000 1.000 1.000 Benign
0.998 0.000 1.000 0.998 0.999 Malicious

SMO 1.000 0.013 1.000 1.000 1.000 Benign
0.987 0.000 0.998 0.987 0.993 Malicious

TABLE IV
RESULTS OF THE EVALUATION ON BOSC DATA

Model TP Rate FP Rate Precision Recall F-Measure Label

REPTree 0.998 0.007 1.000 0.998 0.999 Benign
0.993 0.002 0.937 0.993 0.964 Malicious

Random Tree 0.998 0.030 0.999 0.998 0.999 Benign
0.970 0.002 0.942 0.970 0.956 Malicious

Random Forest 0.999 0.007 1.000 0.999 0.999 Benign
0.993 0.001 0.964 0.993 0.978 Malicious

SMO 0.998 0.000 1.000 0.998 0.999 Benign
1.000 0.002 0.944 1.000 0.971 Malicious

TABLE V
CONFUSION MATRIX OF EVALUATION ON NETWORK FLOW DATA

a b Actual

REPTree 279336 4 a = 0
8 4524 b = 1

Random Tree 279332 8 a = 0
13 4519 b = 1

Random Forest 279338 2 a = 0
9 4523 b = 1

SMO 279333 7 a = 0
60 4472 b = 1

A. WEKA

WEKA [46] is an open-source Machine Learning/Data
Processing application with tools for Data Preprocessing, Data
Manipulation, and a Library for data classification/regression.
WEKA has tools for attribute selection, experiment creation,
and clustering. It has been observed that many studies with
or without intrusion detection used WEKA for classifying and
data processing [47], [48]. All the data processing and anomaly
detection models we have used were implemented and tested
using WEKA on the machine described in Section V.

B. Overview of the Results

In our experiments, we considered three decision tree ap-
proaches and the SMO Algorithm. The flow dataset includes

TABLE VI
CONFUSION MATRIX OF EVALUATION ON BOSC DATA

a b Actual

REPTree 4956 9 a = 0
1 133 b = 1

Random Tree 4957 8 a = 0
4 130 b = 1

Random Forest 4960 5 a = 0
1 133 b = 1

SMO 4957 8 a = 0
0 134 b = 1

279340 benign flows and 4532 malicious flows. The BoSC
dataset includes 4965 benign BoSC vectors and 134 malicious
BoSC vectors. We can see that the benign data points are in
much higher quantity than the malicious ones. This is not
unlike real life setting in which regular users will always
be the overwhelming majority compared to malicious actors.
The reason for the disparity for our study is that benign
traffic generation takes upwards of 2 hours while exploit code
including exploit discovery included in the Metasploit modules
takes around a minute. We also opted out of using neural
network based classification due to this imbalance.

We evaluated the True Positive Rate, False Positive Rate,
Precision Score, Recall, and F-Measure of the models on the
created dataset. Precision is the metric which evaluates the



ratio of desired instances in the whole set of instances that the
model predicted the and recall is the performance of the model
regarding how many of those desired instances it classified
correctly compared to how many it had missed. The F-Measure
metric combines recall and precision [49]. The overall results
for the evaluation on network flow feature can be seen in
Table III and Table IV shows the evaluation results for system
call data.

We present the predictions and actual values in confusion
matrix form for the test data of network flow evaluation in
Table V and BoSC in Table VI.

We observe that all algorithms have achieved high per-
formance. Regarding network flow evaluation, REPTree and
Random Forest achieved the best F-Measure scores. This is
reflected in the confusion matrix as well, with REPTree having
the highest true positive and true negative predictions. On
the other hand, looking at the BoSC based evaluation, SMO
has the best performance regarding true negative predictions
while Random Forest has the best performance in true positive
predictions. The interesting result which is at the core of
the present study arises when we consider the difference
in performances between network flow based evaluation and
BoSC based evaluation. Across the board, network flow based
evaluation has resulted in better performance than BoSC based
evaluation. However, we recognize that the magnitude of
data points between the representation differ greatly even
though they have been extracted simultaneously. The feature
extraction methods and the data they use to get those features
differ.

Overall, we can surmise that for the current study, network
flow data has provided better insights for intrusion detection
on containers than BoSC representation.

VII. CONCLUSION

In this study, we set up a simulation environment with
software running in a containerized setting. We then subjected
vulnerable containers running in the lab setting to known
attacks and simulated legitimate activity to create two datasets
for detecting intrusion activity on containers, one based on
system calls and the other based on network flows. Through
our experiments, we found that opting for network flow based
detection results in a better detection rate than the BoSC
representation gathered from syscalls.

We recognize that the results we have gotten are lacking
in generalizability due to the fact that we used only one
vulnerable application with 3 CVEs distributed over 2 CWEs.
A straightforward future work would be to increase the number
of vulnerable applications with a diverse set of attacks to
subject them to. This would result in a more generalizable
result. On a related note, the question of which of those
CVEs or CWEs yield better information for the intrusion
detection system is one that is worth answering, using the
ideas we discussed. Providing insight on types of CWEs that
are better recognizable with different IDS approaches can pave
the way for IDS that are more prepared for different kinds of
weaknesses and exploits.
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[19] J. Flora, P. Gonçalves, and N. Antunes, “Using Attack Injection to
Evaluate Intrusion Detection Effectiveness in Container-based Systems,”
in 2020 IEEE 25th Pacific Rim International Symposium on Dependable
Computing (PRDC), Dec. 2020, pp. 60–69.

[20] C.-W. Tien, T.-Y. Huang, C.-W. Tien, T.-C. Huang, and S.-Y. Kuo,
“KubAnomaly: Anomaly detection for the Docker orchestration platform
with neural network approaches,” Engineering Reports, vol. 1, no. 5, p.
e12080, 2019.

[21] O. Tunde-Onadele, J. He, T. Dai, and X. Gu, “A Study on Container
Vulnerability Exploit Detection,” in 2019 IEEE International Conference
on Cloud Engineering (IC2E), Jun. 2019, pp. 121–127.
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