
AI‑DRIVEN CONTAINER SECURITY APPROACHES FOR 5G AND BEYOND:
A SURVEY

Ilter Taha Aktolga1, Elif Sena Kuru1, Yigit Sever1, Pelin Angin1
1Middle East Technical Univerity, Turkey

NOTE: Corresponding author: Yigit Sever, yigit@ceng.metu.edu.tr

Abstract – The rising use of microservice‑based software deployment on the cloud leverages containerized software ex‑
tensively. The security of applications running inside containers, as well as the container environment itself, are critical for
infrastructure in cloud settings and 5G. To address security concerns, research efforts have been focused on container security
with subϔields such as intrusion detection, malware detection and container placement strategies. These security efforts are
roughly divided into two categories: rule‑based approaches and machine learning that can respond to novel threats. In this
study, we survey the container security literature focusing on approaches that leverage machine learning to address security
challenges.

Keywords – Anomaly detection, container, intrusion detection, machine learning

1. INTRODUCTION
Containers are lightweight and portable abstractions that
contain the binary of an application, as well as the nec‑
essary and sufϐicient minimal dependencies to run them.
Using containers to deploy software on the cloud has
replaced bare metal installations as the industry stan‑
dard [1] due to microservice‑based architecture’s de‑
mand for scalable and lightweight computation envi‑
ronments. Companies such as Amazon, Netϐlix, Spotify
and Twitter use microservices architecture in their prod‑
ucts [2], which is becoming increasingly commonplace in
many enterprise systems. Compared to virtual machines,
containers are faster to initialize and more lightweight
since they do not need an extra virtualization layer to op‑
erate [3].
The widespread adoption of 5G networks has led to an in‑
crease in the use of container technologies to support the
deployment and management of applications. Containers
are a straightforward answer for running the services re‑
quired by 5G, they are portable and lean in terms of size
requirements and lightweight in terms of preparation and
startup times. The use of containers in 5G networks can
provide a number of beneϐits for Virtual Network Func‑
tions (VNFs), including improved scalability, ϐlexibility,
and efϐiciency.
The portability and ϐlexibility of containers enable them
to be deployed on demand, making it easier to manage the
lifecycle of VNFs and to adapt to changing network con‑
ditions. Additionally, the use of container orchestration
platforms such as Kubernetes allow for automated scaling
and management of containerized VNFs, further improv‑
ing the agility and scalability of 5G networks. This makes
it easy to deploy and run VNFs on any infrastructure, and
to scale them up or down as needed. Furthering the secu‑
rity and reliability of containers will, in turn, allow their
rapid adoption in 5G VNFs [4].

With the increasing adoption of container technology,
there is a growing concern about the security of con‑
tainerized applications and networks. Containers are
found to be less secure than virtual machines which is a
detriment to their adoption [5]. The use of containers
can introduce new vulnerabilities and risks that need to
be addressed to ensure the security and integrity of 5G
networks.

In the context of 5G networks, security is a paramount
concern due to the critical nature of the services and ap‑
plications being deployed. The integration of container
technology in 5G networks introduces unique security
challenges that need to be addressed to ensure the in‑
tegrity, conϐidentiality, and availability of network re‑
sources and sensitive data. The lightweight and portable
nature of containers, combined with their ability to dy‑
namically scale and adapt, makes them an attractive tar‑
get for adversaries seeking to exploit vulnerabilities and
launch attacks. Therefore, it is essential to develop robust
security measures and solutions speciϐically tailored for
containerized environments in 5G networks. This study
aims to address this need by focusing on the application of
machine learning approaches to enhance container secu‑
rity in the context of 5G networks. By leveraging machine
learning techniques, we aim to improve anomaly detec‑
tion, intrusion detection, malware detection, and other
security aspects within containerized 5G environments.
The ϐindings of this research contribute directly to the
overarching goal of ensuring the security and trustwor‑
thiness of 5G networks, enabling the safe and reliable op‑
eration of critical services and applications.

Machine Learning (ML) techniques for container secu‑
rity have been investigated in many studies. Nassif et
al. [6] conducted a systematic review that analyzes

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

© International Telecommunication Union, 2023
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

More information regarding the license and suggested citation, additional permissions and disclaimers is available at:
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

machine learning models for anomaly detection. They re‑
viewed ML models from four perspectives: the applica‑
tion of anomaly detection, the type of ML technique, the
ML model accuracy, and the anomaly detection technique,
i.e. whether they are supervised, semi‑supervised or un‑
supervised. A review conducted by Mohan et al. [7] fo‑
cused on the applications of various ML and deep learning
methods in the implementation of defensive deception.
They summarized the classiϐication of several deception
categories, new machine learning and deep learning tech‑
niques in defensive deception, including the models, com‑
mon datasets, key contributions, and limitations. Zhong
et al. [8] introduced a taxonomy of the most common ma‑
chine learning algorithms used in the ϐield of container
orchestration. The authors presented ML‑based con‑
tainer orchestration approaches, classiϐied the orchestra‑
tion methods, and demonstrated the evaluation of ML‑
based approaches used in recent years. Also, the authors
discussed machine learning approaches for anomaly de‑
tection. Another survey conducted by Wong et al. [9] pro‑
vides a systematic review of containers, covering vulnera‑
bilities, threats, and existing mitigation strategies, to pro‑
vide information on the landscape of containers. The au‑
thors also discuss some machine learning methods, and
the papers utilizing ML techniques to improve container
security.
This survey distinguishes itself by integrating state‑of‑
the‑art artiϐicial intelligence methodologies, including
artiϐicial neural networks, machine learning, and deep
learning techniques. It provides an extensive exami‑
nation of a diverse array of detection models, encom‑
passing supervised, semi‑supervised, and unsupervised
approaches. The survey employs meticulously curated
datasets for the purpose of training and evaluation. Fo‑
cusing speciϐically on fortifying containerized environ‑
ments, it explores critical aspects such as intrusion detec‑
tion, malware detection, attack detection, anomaly detec‑
tion, and inter‑container security. By offering invaluable
insights into the latest advancements and persistent chal‑
lenges in container security, this survey serves as an all‑
encompassing resource for researchers and practitioners
seeking to enhance their container security measures.

2. PRELIMINARIES
In this survey, we base our discussion on the most preva‑
lent container architecture for academia as well as the
commercial space, Linux containers. Containers lever‑
age two important Linux kernel features: control groups
(cgroups) and namespaces. A namespace is a layer of
abstraction that covers the processes inside that names‑
pace. Wrapped processes get a private and isolated view
of system resources. The processes inside the namespace
are also isolated from the changes that happen to global
resources, allowing developers to prepare environments
for binaries to run with defaults that the binaries expect
and not disturb execution ϐlow. There are different types
of namespaces that correspond to different constrained

Fig. 1 – An overview of virtual machines and containers

views into system resources. There are a total of eight
different namespace types which constrain the view of ei‑
ther the cgroup root directory, message queues, network
devices, mount points, process ID space, clocks, user and
group IDs and hostnames.
As namespaces wrap processes with an isolated view of
system resources, the level of allocation of said resources
are controlled through cgroups. cgroups are another
Linux kernel feature which limits and monitors the re‑
source usage of processes. When a process is put into a
cgroup hierarchy, its access to system memory, CPU, pri‑
ority of network communication, network bandwidth it
can use etc. are controlled. Control groups are used to al‑
locate system resources fairly between different contain‑
ers in the same host system.
All in all, containers are Linux processes that are con‑
strained and isolated through aforementioned kernel fea‑
tures. Through constraining and isolating the process or a
bundle of related processes with ϐiles relevant to their op‑
eration, we get lightweight containers that can be packed
with their dependencies. Since setting up containers with
cgroups and namespaces can get cumbersome, there are
container management frameworks and container run‑
times to assume these tasks. Well‑known examples of
these container technologies are Docker, Podman, Linux
Containers (LXC), RKT and CRI‑O. A full‑ϐledged cluster
needs additional management and tooling as well. These
include service discovery within the cluster, container or‑
chestration and networking among others [10]. Docker
is favored as the main container technology [11] with
Docker Hub, a public container library, playing a major
role in its popularity.
Although the Linux kernel provides ease of use for the
isolation framework we have discussed, it comes with a
drawback. Since all containers share the single kernel
running on the host and there is no need for a separate hy‑
pervisor layer as in virtual machines, the isolation guar‑
antees for containers are brittle. Vulnerabilities and mis‑
managed containers can cause this isolation to be broken.
The result has been titled “container escape” [12].
Virtual machines are slower to start up and get running
compared to containers. One canonical question can arise
at this point of the discussion: why do we use virtual ma‑
chines if containers are more lightweight? The security
of containerized applications have been challenging

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 365

researchers while the stronger isolation offered by virtual
machines are better. Furthermore, the kernel features
that allow containers as we know them today have been
matured much later than the framework to support vir‑
tual machines.

2.1 Intrusion Detection Systems (IDS)
An intrusion in the context of computer security is at‑
tempted or successful access to conϐidential data or re‑
sources by unauthorized parties. Network engineers use
Intrusion Detection Systems (IDSs) which monitor a sys‑
tem and its resources to detect and report intrusions [13].
Monitoring system resources involves either placing sen‑
sors on host systems that analyze machine behavior or
placing sensors on the network to monitor trafϐic. IDSs
are categorized according to these sensors: Host‑based
IDS (HIDS) and Network‑based IDS (NIDS), respectively.
Machine behavior that HIDS leverage can involve CPU,
RAM and disk usage and network trafϐic that NIDS moni‑
tor involves individual packets that ϐlow through the net‑
work and analytics that are derived from them [14].
Another categorization we can apply to IDSs is whether
they detect anomalous behavior by comparing against a
set of predeϐined malicious behavior signatures or learn‑
ing benign and malicious behavior to detect abnormal be‑
havior. The former is named signature‑based IDS and
the latter is named anomaly‑based IDS. Since develop‑
ing signature‑based IDS involves collecting and collating
a large dataset which is not readily transferable from sys‑
tem to system [15], studies often focus on anomaly‑based
IDS research.

2.2 System calls
System calls are an interface between the hardware and
the user space processes. Processes interact with the
kernel and request privileged actions, such as interacting
with hardware resources or performing network opera‑
tions. These actions are restricted to certain processes
and the kernel implements security policies to determine
which processes can make certain system calls. Since
system calls are always present whenever a process per‑
forms a worthwhile action, it offers a valuable source of
information. Hence, system call monitoring is a com‑
mon technique for detecting suspicious behavior in com‑
promised applications because malicious code has to use
system calls to perform malicious operations. Tools like
strace and ftrace are used to show the sequence of system
calls made by a particular command or process [16]. Mon‑
itoring system calls can help identify and mitigate prob‑
lems caused by compromised applications.
Bag of System Calls (BoSC) [17] is a method for us‑
ing system call data in machine learning applications.
The method involves creating a frequency list 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛 where 𝑠𝑖 is the number of times the system
call during that time window is observed [18]. BoSC rep‑
resentation has seen frequent use in container intrusion

detection literature [19, 20] often pairedwith the Sysdig 1

tool [21, 22] to directly stream system calls from running
containers with a low overhead.
Frequency lists are not the sole method for using sys‑
tem call traces in machine learning applications. For in‑
stance, Srinivasan et al. [16] used sequences of system
calls with preserved order to create 𝑛‑grams with Maxi‑
mum Likelihood Estimator for anomaly detection in con‑
tainers. Karn et al. [23] used n‑gram representation as
well during detectingmalicious processes inside contain‑
ers. Iacovazzi and Raza [24], on the other hand, repre‑
sented system calls in a sequence in a graph representa‑
tion to preserve dependencies between system calls. In
a similar vein, Chen et al. [25] represented remote proce‑
dure calls with a graph to monitor microservice behavior.

3. CYBERATTACKS ON CONTAINERS
As previously mentioned, security concerns regarding
containers are the major drawback against their adop‑
tion. These security concerns have been categorized to
lead the research community to study them on a com‑
mon framework. Sultan et al. [5] investigated the threat
model for containers across the literature and suggested
four general use cases: (i) protecting containers from the
applications inside, (ii) protecting containers from each
other, (iii) protecting hosts from containers, (iv) protect‑
ing containers fromhosts Tomar et al. [26] extended these
use cases by including the Docker client as a potential tar‑
get.
For our discussion, we will handle the container secu‑
rity challenges from two perspectives. First, the secu‑
rity of the application running in the container should be
considered. If an application has vulnerabilities or bugs,
running it in an isolated setting will not prevent the loss
of availability we will experience upon those vulnerabil‑
ities getting exploited. We also need to consider the se‑
curity of the containerization mechanism itself. Secur‑
ing the isolation and restriction of the runtime environ‑
ment results in reliable systems. Failure to do so can re‑
sult in loss of conϐidentiality when containers operate in
a multi‑tenant environment through data leakages. An‑
other class of container vulnerability emerges when the
isolation mechanism of the container is broken. These
vulnerabilities have been appropriately named as “con‑
tainer escapes”. Container escapes often abuse the in‑
terface offered to container development and runtime to
access the host system. In turn, those interfaces can be
made accessible through the vulnerabilities in the appli‑
cations themselves, allowing for arbitrary command exe‑
cution inside the container environment.
Misconϐiguration of containers or container runtime, as
well as the default privileges container runtimes, have led
to privilege escalation in the host system and the even‑
tual compromise of it. The namespace feature of the
kernel can also be exploited through namespace injec‑

1https://sysdig.com/

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023366

https://sysdig.com/

tion [27], which allows amalicious container to piggyback
the hosts’ isolation process and see the victim container’s
PID space just as the host can. In this section, we will
delve into one case of container escape in detail and ana‑
lyze some attacks targeting the containerization process.
Wewill base our discussion around Common Vulnerabili‑
ties andExposures (CVE), a public effort for collecting and
publishing software vulnerabilities.
CVE‑2018‑15664 is a vulnerability which leads to a con‑
tainer escapewhere the attacker gains free read‑write ac‑
cess in the host system with root privileges. The vulner‑
able API regarding this ϐlaw in the Docker engine is the
docker cp call, which leverages the FollowSymlinkIn‑
Scope function which allows developers to resolve paths
in containers. However, Docker versions from 17.06.0‑
ce through 18.06.1‑ce‑rc2 suffer from a time‑of‑check to
time‑of‑use vulnerability in FollowSymlinkInScope. Since
the resolution step of the path and actually using the path
are not performed sequentially, there exists a time frame
where the attackers can symlink a resolved path to an ar‑
bitrary place, which includes root owned directories in
the host machine [28].
CVE‑2019‑5736 is a vulnerability that stems from the
runc binary up to version 1.0.0:rc6. runc is a container
runtime that Docker as well as CRI‑O, containerd and Ku‑
bernetes uses. The ϐlaw in effected runc binary versions
allow an attacker to use a malicious container to over‑
write the runc binary in the host system and gain root
access and privileges [29]. The only prerequisite the vul‑
nerability requires is any command to be run as the root
from the containerwhere the said container creates anew
container using an attacker‑controlled image or running
docker exec to get a shell from an already running con‑
tainer which gave the attacker write access previously.
Prior to proper patching, this vulnerability could be pre‑
vented by using namespaces correctly and mapping the
root of the host system and the container’s user into dif‑
ferent namespaces.

4. MACHINE LEARNING APPROACHES FOR
CONTAINER SECURITY

Container security is handled through rule‑based match‑
ing utilities, where known vulnerabilities and common
misconϐiguration errors are collated through human ef‑
fort [30]. These utilities are adequate for catching known
attacks and conϐiguration mistakes developers make.
However, they cannot detect attacks or vulnerabilities
missing from their rule set. To tackle this issue, machine
learning based container security solutions have been de‑
veloped. In this section, wewill survey container security
approaches that leverage machine learning.

4.1 Intrusion detection
Zhang et al. [31] proposed an intrusion detection sys‑
tem for Digital Data Marketplace (DDM). The presented
system utilizes the One‑Class Support Vector Machines

(OC‑SVM) algorithm. OC‑SVM is an unsupervised learn‑
ingmethod that ϐinds a decision boundarywithmaximum
distance from data points, making it suitable for anomaly
detection where training data is unbalanced. Similar to
SVM’s hyperplane, it uses a spherical boundary to sep‑
arate data. They capture system calls using ϐixed size
windows, apply preprocessing and then feed into the ML
model. Besides intrusion detection, they match the out‑
put of the detection module with an attack database to
decide whether the anomaly is linked to other anomalies.
Their dataset contains system call data from database ap‑
plications and machine learning applications which are
running in containers. For database containers, they have
used Sysdig. They generated trafϐic with Apache JMeter2.
In addition, for unusual trafϐic, Metasploit for Nmap is
used. For machine learning on containers, they have also
used Sysdig to detect adversarial attacks during training.
The trained model successfully detected 100% of the ar‑
bitrary code executions and brute force attackswith a low
false positive rate. They state ROC curve values reach up
to 0.995. This work is limited to system calls and does not
consider any other parameters.
El Khairi et al. [15] proposed a HIDS that relies on mon‑
itoring system calls. The authors used Sysdig to collect
the system calls. The novelty of their work comes from
their usage of context information alongside system calls
to build a graph structure to train and test their IDS. Con‑
text information includes system call arguments and re‑
cently observed system calls. The authors report that
theyweremotivated to use context information due to the
shortcomings of existing HIDS approaches. They used the
LID‑DS dataset [38] and extended the dataset using their
contributed dataset: CB‑DS, which consists of container
escapes.
Here, we will explain their feature selection in detail.
First, they build a graph representation of the system calls
with argument information. This graph representation
natively includes the recently seen system calls as well.
A graph constructed for a timeframe 𝑡 under benign con‑
ditions can be then used in the set of normal behavior
expected during a container’s normal operation. When
the training is over and testing begins, any unseen vec‑
tor is classiϐied against the previously constructed benign
dataset of graphs. The authors evaluated their framework
on different classes of vulnerabilities and compared their
approach against CDL and STIDE‑BoSC.
Sever et al. [22] tackled a research gap in the container
IDS literature. The authors realized that previous work
focused solely on HIDS approaches that monitor system
calls to train and evaluate anomaly‑based IDS. This leaves
anomaly‑based NIDS which can leverage network trafϐic
features such as network ϐlow out of the picture. In or‑
der to answer whether this omission is justiϐied or not,
the authors set up an experiment environment with JMe‑
ter as the benign trafϐic source, a web application running
in a container as the victim and the Metasploit tool as the
2https://jmeter.apache.org/

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 367

https://jmeter.apache.org/

Table 1 – Overview of surveyed container intrusion detection approaches

Work ML
Method

Feature
Collection Dataset Victim

Machine
Attack
Type Monitoring

[31] OC‑SVM n‑gram custom syscall
attack dataset

CoughDB,
MongoDB,
static ML app

Container Privilege Escalation, Brute
Force, Execution of Arbitrary Code, Adver‑
sarial ML attacks

JMeter,
nmap,
Sysdig

[15] auto‑
encoder

system call se‑
quence graph

LID‑DS, CB‑DS Flask‑python
web app

Sprocket Information Leak, MySQL Auth
Bypass, Release Agent Abuse, Dirty Pipe

Sysdig

[22] REPTree,
Random
Tree, Ran‑
dom Forest,
SMO

BoSC, network
ϐlow

custom syscall
and network
ϐlow dataset

rConϐig OS Command Injection, SQL Command In‑
jection

Sysdig,
tcpdump

[32] STIDE, BoSC,
HMM classi‑
ϐiers

STIDE, BoSC custom syscall
dataset

MariaDB Overϐlow, Bypass, Privilege Escalation, DoS Sysdig

[33] Decision
Tree, Ran‑
dom Forest

BoSC custom syscall
dataset

MySQL Authentication Bypass, DoS, Privilege Es‑
calation, Integer Overϐlow

Sysdig

[24] Random
Forest, Iso‑
lation Forest

anonymous
walk embed‑
ding

custom syscall
dataset and
CUI‑2020

Hadoop clus‑
ter, NGINX,
Apache Solr

Cryptomining, backdoor perf

[34] semi‑
supervised
learning

process graph,
node2vec

auditd contribution DoS, privilege escalation auditd

[35] variational
autoencoder

time series
performance
event data

Container
Performance
Event Dataset
(CEPD)

Container
based big data
platform

Spectre, Meltdown ptrace,
perf

[36] auto‑
encoder,
GAN

network traf‑
ϐic, system and
network level
performance
data

VM Migra‑
tion dataset
created using
CloudSim

2 host with 3
VM in total

Net Scan, DoS Not
mentioned

[37] Random
Forest

n‑gram ADFA‑LD Django, Httpd,
MySQL, Tomcat

XSS Attack, SQL Injection, Security Policy
Bypass, Remote Command Injection, Iden‑
tity Bypass, Arbitrary File Read/Write

Sysdig

malicious trafϐic source. The authors used the Sysdig tool
to gather system call traces and tcpdump to capture net‑
work trafϐic between the attacker machine and the vic‑
tim container. They used system call data with BoSC as
the feature and network ϐlow data derived from network
.pcap captures. In order to evaluate intrusion detection
performance, the authors selected four machine learning
algorithms found commonly in the container IDS litera‑
ture: REPTree, random tree, random forest and SMO. Af‑
ter evaluating both BoSC and network ϐlow based moni‑
toring with those four algorithms, the authors found that
network ϐlow data yielded better performance than BoSC.
However, the authors used only one victim application
with only three different attacks for their dataset, putting
a detriment on the generalizability of their study.
Flora et al. [32] evaluated intrusion detection perfor‑
mance by monitoring system calls on a containerized ap‑

plication by using attack injection. Their approach to
this comparison is twofold: they evaluated the instruc‑
tion detection performance between Docker containers,
LXCand the application runningonbaremetal using three
classiϐiers: BoSC, STIDE, and HMM. First, the authors de‑
cided on an application: MariaDB, running in a container
for the Docker and LXC settings and standalone for the
bare metal case. As is the case with attack injection ap‑
proaches, they decided on the TPC‑Cworkload for the be‑
nign trafϐic source. For malicious trafϐic, they picked 5
CVEs and used their implementations from exploit-db.
com. The authors decided to capture every system call
emitted by the containers using the sysdig tool during the
experiments while they captured only MariaDB and its
children’s system calls for the bare metal case. Running
the TPC‑C workload for 24 hours with 30 minutes of ma‑
licious trafϐic during the benign trafϐic period yielded the

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023368

exploit-db.com
exploit-db.com

data required for the analysis. The authors then used the
classiϐiers to discern between malicious and benign traf‑
ϐic.
During their analysis, the authors found that intrusion de‑
tection by using the methods mentioned above yielded
the best overall results for the application running in
the Docker container. While detection on Docker gave
the highest recall across all three algorithms, BoSC per‑
formed marginally better than STIDE and wholly better
than HMM. The authors also concluded that using lower
epochs resulted in better detection performance and in‑
terpreted it as the models learning how to discern be‑
tween the malicious and the benign trafϐic without learn‑
ing unnecessary details. On the other hand, the authors’
analysis is constrained to only one database application:
MariaDB.
Cavalcanti et al. [33] compared the performance of intru‑
sion detection systems for containers. They framed their
observations under two categories: the effect of the clas‑
siϐier architecture and the performance of different ma‑
chine learning algorithms. The authors set up an attack
injection scenario where they subjected a MySQL Docker
image to TPC‑C benchmark for benign trafϐic and four dif‑
ferent attacks from exploit-db.com with CVEs for mali‑
cious trafϐic. Overall, the authors used three classiϐier ar‑
chitectures: label encoding and one‑hot encoding, sliding
window with label encoding and one‑hot encoding, and
sliding window with BoSC.
The authors used AdaBoost, decision tree, Gaussian naive
Bayes, k‑nearest neighbors, multilayer perceptron, multi‑
nominal naive Bayes, random forest and support vector
machine as classiϐiers. Gaussian naive Bayes performed
the best in terms of recall, while k‑nearest neighbors
had the best precision out of all machine learning algo‑
rithms for the ϐirst classiϐier architecture. In terms of F‑
Measure, support vector machine had the highest per‑
formance with 83.2%. The second classiϐier architec‑
ture achieved the highest F‑Measure of 99.4% with the
random forest algorithm when the window size was 30.
Both decision tree and random forest had the highest F‑
Measure with 99.8% for the ϐinal classiϐier architecture
when the sliding window size was set to 30 again, albeit
not much higher than other algorithms. The important
takeaway from the results obtained by the authors is that
the context of which the system calls appear contributes
more to the detection performance than the speciϐic ma‑
chine learning algorithm chosen.
Iacovazzi andRaza [24]present amachine learning‑based
solution for intrusion detection in cloud containers. The
proposed solution combines supervised and unsuper‑
vised learning methods, and it is designed to work at the
host operating system level, using data observable at the
kernel level. The solution uses a mix of random forests
and isolation forests to classify container workload be‑
haviors and detect adverse behavior within the contain‑
ers. Note that random forests are supervised learning
methodswhile isolation forests are unsupervised. First, a
graph representation of the sequence of system calls are

collected at the host machine’s kernel level. This graph is
then processed using random and anonymous walk algo‑
rithms to extract the features. This representation is fed
into a random forest classiϐier, which is trained on nor‑
mal classes and outputs a set of probabilities for whether
the input belongs to each class. The probabilities are
passed to a third stage, where they are used for gener‑
ating anomaly scores using an ensemble of isolation for‑
est modules, one for each normal class. Isolation forest
modules are trained on datasets containing samples from
the respective normal class and contaminated with sam‑
ples from other normal classes. The ϐinal decision about
the class of the input sample is based on the outcomes
of the anomaly scores. If all anomaly scores are below
a threshold, the input is classiϐied as the class with the
highest score or as an anomaly if all scores are under
the threshold. If more than one score is higher than the
threshold, the input is classiϐied as an anomaly. In or‑
der to effectively capture dependencies between adjacent
system calls in a sequence, which are not considered in
the bag‑of‑system‑calls approach, they use a graph‑based
representation. This graph representation and feature ex‑
traction process enables the effective classiϐication of con‑
tainer workload behaviors and the detection of malicious
behavior within the containers. Although the EoF method
outperforms the SVM and LOF alternatives, there were
some limitations to this approach, as it was not able to de‑
tect all attacks with a true positive rate above 0.7, namely
Backdoor and SQL Injection. Moreover, the work has been
conducted on Docker containers and possible attacks dur‑
ing container migration have not been discussed.
In their work, Pope et al. [34] introduce a new dataset
derived from the Linux Auditing System, which contains
both malicious and benign examples of container activity.
This dataset is the ϐirst of its kind to focus on kernel‑based
container escapes and includes attacks such as denial‑of‑
service and privilege escalation. The data was generated
using the autoCES framework and includes partial labels
identifying benign and malicious system calls over spe‑
ciϐic time intervals. However, the dataset has some lim‑
itations, including incomplete annotations and a limited
number of container escape scenarios. Additionally, the
selection of benign background activity in the dataset may
not be comprehensive. The goal of this dataset is to be
used in a semi‑supervised machine learning context. For
the machine learning process, they began by converting
the auditd data into a process graph, which illustrated the
relationships between processes. This graph was then
transformed into vectors using a node embedding tech‑
nique. The resulting vectors were used to train a logis‑
tic regression classiϐier, which was able to accurately pre‑
dict whether a process was benign or malicious with an F1
score of 97%. The authors also mention that the dataset
could potentially be utilized for other applications, such
as training an autoencoder for anomaly detection. These
results demonstrate the effectiveness of the dataset in a
semi‑supervised learning context.

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 369

exploit-db.com

trusion detection system. They focus on detecting Melt‑
down and Spectre attacks in container environments.
Spectre and Meltdown are vulnerabilities that can be ex‑
ploited using cache‑based side‑channel attacks to access
sensitive data. These vulnerabilities allow attackers to ac‑
cess data that is temporarily stored in the cache, which
can then be extracted using cache‑based side‑channel
attacks. In this work, to satisfy conditions for Spectre
and Meltdown attacks, the scenario is designed with co‑
resident containers (i.e. sharing the same hardware).
They designed the ContainerGuard service to watch the
workϐlows. By monitoring, they capture hardware and
software performance time‑series data. After data col‑
lection, they distribute data to corresponding variational
autoencoders considering the performance data category
which are hardware CPU events, hardware cache events
and software events. For the purpose of evaluating a
method for detecting the Meltdown and Spectre attacks,
a dataset called the container performance event dataset
which includes 400,000 benign and 60,000 malicious data
was created. The method’s highest AUC score ranges
from 0.90 to 0.99. In addition to the detection perfor‑
mance, there is no signiϐicant runtime performance over‑
head which is measured as approximately 4.5%.
Chakravarthi et al. [36] focused on assessing the effec‑
tiveness of anomaly detection during service and virtual
migrations in cloud environments. The authors trained
autoencoders and SVM on the generated dataset. They
state that autoencoders perform well during VM migra‑
tions with a false positive rate below 15%. They used
the reconstruction error of the autoencoder model as the
anomaly score. One limitation of their work is that there
is no benchmarked dataset available to test the resilience
of the cloud infrastructure. They generated data sam‑
ples from a simulated network and balanced them using
the generative adversarial networks. These samples were
classiϐied as either anomalous or normal using the au‑
toencoder model. However, their trained model is only
able to detect anomalous trafϐic in a cloud environment
that is similar to the one simulated in their experiments.
Clustering algorithms aim to divide the provided unla‑
beled data into clusters that achieve high inner similarity
and outer dissimilarity. They do not rely on signatures,
a description of attack classes, or labeled data, therefore
for the purpose of detecting anomalies in unlabeled data,
unsupervised IDS and clustering approaches are used.
To increase the effectiveness of anomaly detection in the
edge computing environment, Shen et al. [37] proposed
an anomaly detection framework combining cluster algo‑
rithms. The proposed framework initially identiϐies and
classiϐies containers before building anomaly detection
for each group. Also, they use system calls to inspect con‑
tainers’ behavior and perform classiϐication and intrusion
detection. They looked into eight real‑world vulnerabili‑
ties, and the experiment results show that the framework
increased the True Positive Rate (TPR) from 90.3% to
96.2%, and False Positive Rate (FPR) reduced from 0.61%
to 0.09% compared to the traditional method.

The framework utilizes Sysdig to collect system call data
generated by containers, the DBSCAN cluster algorithm to
classify containers in an unsupervised way, and the ran‑
dom forest classiϐier for each application category to de‑
tect anomalies. Also, they used their approach with two
different detection methods. First, they used one detector
for all containers. This method collects system calls from
all applications without distinguishing between applica‑
tions. The other method uses one detector for each con‑
tainer. Even though the second approach achieves better
results, it incurs a signiϐicant performance cost.
Table 2 presents a succinct overview of several surveyed
papers on intrusion detection in container environments,
highlighting both their advantages and potential limi‑
tations. Certain papers demonstrate low false positive
rates for various attacks, efϐiciently handle container scal‑
ability, and showcase improved performance compared
to traditional baselines. They provide realistic insights
into algorithm performance, offer annotated datasets and
real‑world simulations, and enable seamless integration
into container‑based big data platforms. In contrast, spe‑
ciϐic papers encounter challenges in distinguishing nor‑
mal and anomalous traces in adversarial machine learn‑
ing attacks or exhibit limited detection of speciϐic vulner‑
abilities. Moreover, they may demonstrate limited abil‑
ity to generalize, lack in‑depth analysis for certain tools,
or exhibit lower true positive rates for speciϐic attack
types. Some papers possess restricted scenarios within
their datasets or focus exclusively on particular attacks
within container‑based big data platforms. Additionally,
certain papers necessitate prior knowledge of applica‑
tion categories, posing challenges for novel and unidenti‑
ϐied applications. Despite these limitations, the surveyed
papers collectively contribute valuable insights and ad‑
vancements to the ϐield of intrusion detection in container
environments.

4.2 Malware detection
Wang et al. [39] designed and implemented a malware
detection framework for containerized applications. The
novelty of their work comes from their approach ex‑
tracting executables from containers with respect to the
container’s storage driver type. The authors decided to
support overlay2 and aufs, the current and past recom‑
mended storage drivers respectively. With the executable
in hand, the suggested framework ϐirst uses disassembled
code and binary itself for fast path coarse detection using
a multichannel CNN. The slow path detection is done us‑
ing an LSTM‑CNN with API‑call sequences as the features.
The authors have evaluated their implementation on
3000 malware samples acquired from VirusShare and
300 container‑speciϐic attacks against 2000 benign bina‑
ries. Even though the authors compared their framework
against previous work under metrics such as precision
and recall, the previous work they opted to compare to are
not from the container security domain but deal with gen‑
eral software security. Hence, the 300 container‑speciϐic

Another work by Wang et al. [35] proposes a real-time in-

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023370

Table 2 – Overview of surveyed intrusion detection methods: Key advantages and potential limitations

Work Advantage Limitation/Disadvantage

[31] Low false positive rate for container escalation, brute
force, and adversarial ML attacks.

Distinguishing between normal and anomalous traces
in adversarial ML attacks can bemore challenging due
to weak distinctions.

[15] Efϐiciently handles container scalability. Limiteddetectionof lowsyscall vulnerabilities andpo‑
tential evasion by knowledgeable attackers.

[22] Network ϐlow‑based detection outperforms BoSC rep‑
resentation from system calls.

Limited ability to generalize due to the use of a sin‑
gle vulnerable application and a small number of CVEs
distributed over two CWEs.

[32] Results provide realistic insights into algorithm per‑
formance by using representative workloads and at‑
tacks.

Approach lacks detailed FPR analysis for certain tools
like Clair static analysis.

[33] High F‑Measure values indicate effective intrusion de‑
tection in multi‑tenant container environments.

Lack of comparative analysis, limited sliding window
size range, and limited evaluation of encoders are no‑
table limitations.

[24] Improved performance compared to traditional base‑
lines such as one‑class SVM and LOF models.

Lower true positive rates for certain attacks like Back‑
door, SQL Injection, and Brute Force Login.

[34] Annotated container‑escape dataset and real‑world
edge device with simulated VM.

Limited container escape scenarios in the dataset
(DoS and Privilege Escalation).

[35] Easy integration into container‑based big data plat‑
forms without hardware or kernel modiϐications.

Limited to detection of meltdown and spectre attacks
in container‑based big data platforms.

[36] Considers the impact of VMmigration on anomaly de‑
tection performance.

Focuses on detecting Net Scan (NS) and Denial of Ser‑
vice (DoS) attacks.

[37] Automatic classiϐication of containerswithoutmanual
labeling using the DBSCAN algorithm.

Requires prior knowledge of application categories
for building separate detection models, posing chal‑
lenges for new and unknown applications.

attacks are mixed in with the rest of the 3000 malware
samples and there is no particular insight presented for
regular software shipped in containers and vulnerable
containers.
Cryptomining malware has become a signiϐicant threat in
Kubernetes, with hidden executables that uses server re‑
sources for mining. To detect and classify pods that hold
cryptomining processes, Karn et al. [23] proposed that
machine learning can be used together with system calls.
They used several types of cryptominer images, namely
Bitcoin, Bytecoin, Vertcoin, Dashcoin, and Litecoin. Also,
they included healthy pods, that are MySQL, Cassandra,
Hadoop, Graph, Analytics and Deeplearning. They cap‑
tured system calls with a period of 1 minute for each pod.
Then they leveragedn‑grams to extract features. After nu‑
merous experiments they decided to set n as 35 due to its
high recall rate. Following the feature extraction, four ML
models which are decision tree, ensemble learning, feed‑
forward vanilla artiϐicial neural network(ANN) and feed‑
back recurrent neural networkwere selected to trainwith
the data collected. The accuracy of the ensemble learn‑
ing model from the Python‑XgBoost library was similar
on training and validation sets, 89.3% and 89.4% respec‑
tively. For feed‑forward Vanilla ANN, they used the com‑
bination of Keras and Tensorϐlow, with the autokeras tool

to tune hyperparameters. The accuracy was 81.1% on the
training set, and 79.7 % on validation. Due to the nature of
system calls, they are suitable for use as time‑series data.
Therefore, they implemented LSTM RNN. The accuracy
was 79.99% on the training set and 78.90% on the vali‑
dation set. Decision tree implementation with default pa‑
rameter values using Python’s SKLearn library achieved
99.6% accuracy on the training and 97.1% accuracy on
the validation set, outperforming all other models. In ad‑
dition, for better model explainability and visual repre‑
sentation, they used the SHAP and LIME tools.

4.3 Attack detection

Lin et al. [40] proposed an attack detection framework
which consists of different layers in a pipeline in an at‑
tempt to increase detection rate while addressing false
positive and lack of labeled training data issues. Their
proposal has three different modules: ϐirst, they employ
an unsupervised anomaly detection layer which uses an
autoencoder neural network. The authors claim that the
encoder and the subsequent decoder will generate results
with a high reconstruction error for anomalous samples.
The second layer in the pipeline uses the random forest
algorithm to cross‑validate edge cases and potentially

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 371

eliminate false positives. On the ϐinal layer, the authors em‑
ploy an isolation forest to detect outliers and generate
training labels automatically. This pipeline is fed with sys‑
tem call frequency vectors, acquired using Sysdig with a
sampling rate of 100 milliseconds.
In order to evaluate their proposed framework, the au‑
thors applied 7 minutes worth of benign trafϐic onto the
containers using JMeter, where applicable. At the start of
the 5th minute, the authors started the attack; some at‑
tacks caused the container to crash which ended the ex‑
periment, but for the rest, the attack completed and the
experiment ran until the 7th minute. The authors com‑
pared their proposed framework against CDL [41], self‑
patch, a supervised random forest approach and a su‑
pervised CNN. They used 41 real world attacks with as‑
signed CVEs, encompassing 28 applications. They used
containerized applications with application vulnerabili‑
ties, not container‑speciϐic attacks.
Lin et al. [41] presented a classiϐied distributed learn‑
ing framework, namely CDL, to detect anomalies in
containerized applications. The framework achieves
anomaly detection in four major steps: system call fea‑
ture extraction, application classiϐication, system call data
grouping, classiϐied learning, and detection. They process
raw system call traces into a stream of frequency vectors,
and these extracted feature vectors are used to identify
applications. For the identiϐication of applications, they
utilize the random forest classiϐier [42]. When this pro‑
cess identiϐies the containers of the same application, the
framework makes a system call data grouping to append
the frequency vector traces of different containers and
uses them for model training and attack detection. Lastly,
for anomaly detection, the unsupervised model uses au‑
toencoders. The authors investigated 33 real‑world vul‑
nerabilities documented in the Common Vulnerabilities
and Exposures (CVE) database, and the results show that
CDL can detect 31 out of 33 attacks. Also, they inspected
the system run time, and the data indicates that CDL is
lightweight and suitable for detecting attacks in real time
under real‑world circumstances.

4.4 Anomaly detection
Gantikow et al. [43] investigated the behavior of con‑
tainers using neural networks to detect anomalies. The
authors present two approaches for anomaly detection
based on system call traces. First, system call distribu‑
tions are used to detect anomalies. A one‑layer LSTM net‑
work is trained to predict the system call distribution at
time 𝑡 + 1 based on distribution at time 𝑡. The second ap‑
proach is a neural network using ϐile/directory paths for
anomaly detection. Their method is based on training a
neural network to predict the following ϐile system path
based on the most recent ϐile system path used by a sys‑
tem call. The proposed neural network consists of a word
embedding layer, followed by LSTM layers which are de‑
signed to learn to predict the following ϐile system path
based on the vector representation of the current one.

After a prediction is made by this neural network, the ac‑
tual ϐile path and predicted path are compared to detect
anomalies.
Wang et al. [44] proposed an unsupervised anomaly de‑
tection framework. The authors initially acquired sys‑
tem call sequences using the ptrace tool. Then, they used
the word2vec technique to map each system call within
their context from the sequences into a ϐixed size vec‑
tor. These vectors are used sequentially for the rest of
the author’s instruction detection framework. At the ϐinal
layer of their framework, the system detects anomalies
through reconstruction error. For evaluation, the authors
employed the UNM system call sequences dataset. They
also extended it with system call sequences gathered dur‑
ing a sqlmap attack on a container running MySQL, as well
as three different container escape attacks. The dataset
they used for evaluation consisted of 0.63% anomalous
traces with benign samples as the rest. Overall, their ap‑
proach yielded 90% accuracy and an F1 score of 90.75%.
Castanhel et al. [45] present an approach for using system
calls to detect anomalies in containerized systems. The
authors focus on how the size of the window impacts the
results through the implementation of a sliding window
technique. In their implementation, the authors collected
a dataset of system calls by running strace on the host ma‑
chine, outside the container, from a variety of container‑
ized applications and used machine learning techniques
to train a model to classify normal and anomalous sys‑
tem calls based on this dataset. The dataset used in the
study consisted of 50 traces of system calls, with half rep‑
resenting normal behavior and the other half represent‑
ing anomalous behavior. The normal behavior traces con‑
sisted of ϐive different types of expected interactions with
the WordPress application, while the anomalous behavior
traces consisted of ϐive different types of attacks focusing
on cross‑Site Scripting (XSS) and Remote Code Execution
(RCE).
The experiments in the study were conducted on a Linux
host using Docker. The collected system calls were di‑
vided into four groups, with the ϐirst group containing the
most dangerous system calls that alter system behavior.
The last group contained harmless system calls that pri‑
marily query to get system behavior rather than issuing
commands. A sliding window technique was used to ana‑
lyze data from various sources and four algorithms were
applied using seven different window sizes. They tested
both with all data and the data without harmless system
calls and found that the model was able to accurately de‑
tect anomalies in the system calls of containerized appli‑
cations, with an average accuracy of over 90%. The study
concluded that system calls can be an effective means
of detecting anomalies in containerized systems but also
mentioned the fact that their work does not contain all
calls available in current systems. Also, by completing
tasks using a variety of containers with different applica‑
tions instead of just the WordPress application with addi‑
tional plugins, the dataset would have been more diverse,
allowing for a more comprehensive evaluation of the
system’s efficacy.

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023372

Table 3 – Overview of surveyed anomaly detection in container approaches

Work ML
Model

Data
Used

Collecting
Method

[43] LSTM system call, ϐile/directory path Sysdig
[44] BiLSTM system call ptrace
[45] KNN, RF, MLP, AB system call strace
[46] LSTM auto‑encoder system call Sysdig
[47] KNN, k‑means SOM system call CoreOS clair, Sysdig, JMeter
[48] KNN, SVM, NB, RF performance monitoring data cAdvisor, Heapster
[25] DCRNN RPC trafϐic RPC chain clustering
[49] Restricted Boltzman Mahcine user and system deϐined security pro‑

ϐile, automated NIST violations, run‑
time security proϐile

python script

[50] contributed system call, network, I/O activities JMeter, Sysdig
[51] LR, NB, SVM, RF, XGB security related conϐig documents BeautifulSoup, NLTK
[52] SARIMA, HMM, LSTM, auto‑encoder systemmetrics (streaming data) Prometheus

Cui and Umphress [46] created an open‑source dataset
for the observation of system calls. They chose to use a
classic LSTM model as the baseline classiϐier for the un‑
supervised classiϐication task. The reason behind choos‑
ing LSTM is that it has the ability to remember and use
knowledge from previous batches, which makes it suit‑
able for anomaly detection. In the experiments, a total
of 42 models were trained using different combinations
of conϐigurations, including seven different window sizes,
three different feature sets, and two normalization meth‑
ods. These models were then tested on seven different at‑
tacks, with six different conϐidence levels applied, result‑
ing in a total of 1764 entries. Overall the model achieved
over 90% accuracy for brute force login, meterpreter, ma‑
licious script and remote shell attacks. However, its accu‑
racy on Docker escape attacks was only 76.27%. More‑
over, it was observed that the proposed framework was
only evaluated using an ofϐline dataset and a single ap‑
plication. Besides, while the work successfully demon‑
strated the potential for unsupervised introspection, it is
necessary to expand the dataset to include multiple appli‑
cations to see its potential in different contexts.
Tunde et al. [47] presented a combination of static and
dynamic anomaly detection schemes to detect security
vulnerabilities for containers. They conducted a study
on static and dynamic vulnerability detection strategies
using 28 common real‑world security vulnerabilities dis‑
covered in Docker Hub images. Firstly, they used CoreOS
Clair, an open‑source static analysis engine that scans
containers layer‑by‑layer for known vulnerabilities using
CVE databases. Afterwards, they investigated dynamic
detection schemes using different unsupervised machine
learning algorithms. These machine learning algorithms
are selected to address the following unique challenges of
container security:

1. Containers are short‑lived, so the detection algo‑
rithms cannot use large amounts of training data.

2. Containers are highly dynamic; thus, the detection
algorithms cannot make any assumptions about the
application or attack behavior in advance.

3. The detection algorithms should be able to detect
vulnerabilities with a low overhead.

These challenges led the authors to use lightweight un‑
supervised anomaly detection schemes such as k‑nearest
neighbor, k‑means clustering, KNN combinedwith Princi‑
pal Component Analysis (PCA), and Self‑Organizing Map
(SOM). Their comparison between different exploit de‑
tection schemes was based on the following metrics: de‑
tection coverage, false positive rate, and lead time. The
metrics indicate if each approach can detect vulnerabili‑
ties, how accurately they can achieve detection and how
quickly they can detect attacks, respectively. The KNN al‑
gorithm was used to perform outlier detection. Because
the presence of noise in the feature data prevents theKNN
algorithm from achieving high accuracy, they used KNN
with PCA. While the KNN algorithm had a detection cov‑
erage rate of 32.14%, PCA + KNN had a slightly better de‑
tection coverage rate of 35.71%. The k‑means approach
achieved a 67.86% detection coverage rate. The Self‑
Organizing Map (SOM) approach over system call time
vectors (SOM time) detected 75% of the vulnerabilities,
while the SOM approach over system call frequency vec‑
tors (SOM frequency) detected 79% of the vulnerabilities.
Therefore, the SOM approach accomplished the highest
detection coverage. At the false positive rate compari‑
son, again the SOM approach achieved the lowest false
positive rate, with 1.7% for the SOM frequency and 1.9%
for the SOM time. It is followed by the k‑means cluster‑
ing approach with 7.67%. Moreover, KNN and KNN with

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 373

PCA obtain the highest false positive rateswith 9.92% and
9.88%, respectively. Finally, the SOM approach attained
the largest detection lead time, with 28.7 seconds for SOM
frequency and 25.8 seconds for SOM time. On the other
hand, KNN, KNN with PCA, and k‑means achieved 0.57,
1, and 0.36 seconds respectively. The authors also stated
that combining static and dynamic schemes can increase
the detection coverage rate to 86%. They concluded that
static analysis for container security is insufϐicient and
dynamic anomaly detection schemes can achieve a high
detection coverage rate with a low false positive rate.
Du et al. [48] used different supervised machine‑learning
algorithms to detect anomalies in container‑based mi‑
croservices. The proposed anomaly detection system
consists of three modules: the monitoring module, the
data processing module, and the fault injection module.
First, the monitoring module is used to collect real‑time
performance monitoring data from the target system. In
the paper, the authors focused on container andmicroser‑
vice monitoring, and the term “container” was used to
refer to a collection of containers constituting one com‑
plete microservice. Secondly, the data processing module
is used to analyze this data and detect anomalies. They
determine whether a container performs well by gather‑
ing and processing its performance data, just as they de‑
terminewhether amicroservice is abnormal by gathering
and processing the performance data of all related con‑
tainers. After classifying if amicroservice has an anomaly,
the anomaly detection system ϐinds the anomalous con‑
tainer. In order to detect anomalies, they use supervised
machine learning algorithms such as SVM, random for‑
est, naive Bayes and KNN. Also, to ϐind the container that
caused an anomaly, time series analysis is used. Lastly,
the fault injection module simulates service faults (CPU
consumption, memory leak, network package loss, and
network latency increase) and collects datasets of per‑
formance monitoring data. These datasets are used to
train machine learning models to validate the anomaly
detection performance. The validation results show that
random forest and KNN classiϐiers achieved satisfying re‑
sults using each dataset. Furthermore, SVM performs the
worst since it does not work well on datasets with multi‑
ple classes.
Remote Procedure Calls (RPC) allow components in a
distributed cluster of applications to invoke each other’s
functions (procedures) seamlessly, as if those functions
are owned by the invoking application. The network layer
between the components is abstracted as a result. Chen et
al. [25] suggestedusingRPCs as an alternative tomonitor‑
ing system calls, since RPCs are required for meaningful
interaction between a distributed cluster’s components
just like system calls being required for worthwhile oper‑
ations within an application. They handled RPCs as RPC
chains, a sequence of RPCs that depend on each other and
appear in order during common operations. The authors
found that representing RPC chains as directed weighted
graphs suits their use case well. They represented nodes
as RPCs, edges and weights as the dependency between

different RPCs, and labeled nodes with the number of
times that particular RPC was invoked.
To learn regular RPC trafϐic and predict anomalous RPC
trafϐic, the authors ϐirst trained the DBSCAN [53] cluster‑
ing algorithm to acquire the RPC chains. The authors then
trained a DCRNN model to predict the trafϐic model from
previously observed RPC trafϐic. By using mean absolute
error and variants, theymanaged to label anomalous traf‑
ϐic when observed RPC chains deviated from the expected
trafϐic in their case study which was performed on a Ku‑
bernetes cluster with “billions of daily active users” [25]
and RPC trafϐic that spans two weeks.
Kamthania [49] presents a deep learning algorithm for
detecting malicious patterns in individual container in‑
stances. The algorithm was designed to be easily applied
to any container platform that adheres to the Open Con‑
tainer Initiative (OCI) standard. The algorithm utilizes a
Gaussian‑Bernoulli restricted Boltzmann machine. A Re‑
strictedBoltzmannMachine (RBM) is a type of neural net‑
work that is used for unsupervised learning. RBMs are
composed of a visible layer, which encodes the input data,
and a hidden layer, which learns features from the in‑
put data. RBMs are trained using an energy‑based model,
where the energy of a conϐiguration of the visible and hid‑
den units is minimized. RBMs are often used for tasks
such as dimensionality reduction and collaborative ϐilter‑
ing. Gaussian‑Bernoulli RBMs are a variant of RBMs that
can handle continuous‑valued data, rather than just bi‑
nary data, in the visible layer.
By using RBM, they create a container proϐile based on
the conϐiguration of the containers and extract behavioral
statistics at runtime. The algorithm then uses automated
NIST container security rules to identify any security vio‑
lations for the container under test and applies amachine
learning algorithm to build a complete security proϐile for
the container. In their results they included the follow‑
ing attack types: unbounded network access from con‑
tainers, insecure runtime conϐigurations, rogue contain‑
ers, improper user access rights, embedded clear texts.
KubAnomaly, a system that offers security monitoring ca‑
pabilities for anomaly detection on the Kubernetes or‑
chestrationplatformwasproposedbyTien et al. [50]. The
aim of this system is to improve Docker security, which is
compatible with Kubernetes. KubAnomaly provides a se‑
curity monitoring module with customized rules in Sys‑
dig and observes the internal activities of containers, sys‑
tem calls, I/O activities, and network connections. Since
monitoring too many events would result in a large over‑
head, they selected four system call categories which are
ϐile I/O, network I/O, scheduler and memory. A neu‑
ral network model was created to classify multiple types
of anomalous behavior, such as injection attacks and
Denial‑of‑Service (DoS) attacks. Three different datasets
were used to train the ML models. These three different
datasets include private data, a public data called CERT
and real‑world experimental data to evaluate the system
accuracy and performance. Further explanation of the
datasets is available in Section 4.6

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023374

The proposed anomaly classiϐication model is organized
into four steps. They begin by monitoring log data from
their agent service, which collects monitor logs from
Docker‑based containers. After obtaining the raw mon‑
itor logs, they extract features to train their models. The
next step is data normalization for fast convergence and
improved accuracy. Lastly, they construct the anomaly
classiϐication model using four fully‑connected layers,
and for the backend, they use Keras and Tensorϐlow. The
results show that KubAnomaly is able to detect many ab‑
normal behaviors.
Mubin et al. [51] focused on conϐigurations of container
orchestrators. A container orchestrator itself should be
correctly conϐigured to provide security for all otherman‑
aged containers. They introduced a newmethod that uses
keywords and learning to capture knowledge about con‑
ϐigurations which was not studied before. The module
created, namely KGSecConϐig, aims to create a Knowledge
Graph for Conϐiguration (KGConϐig) of various platforms,
cloudproviders, and tools used in container orchestration
to organize scattered data. They extracted information
from documentation ϐiles and created entities. Between
these entities, there exist several relationships such as
“hasDefault”, “hasArgument”, “hasType”, “hasOption”, and
“hasDescription”. This representation is used to identify
the conϐiguration syntax and formulate keyword‑based
rules for estimating the relevancy of security documents
with conϐiguration.
In order to train a supervised learning model to extract
conϐiguration concepts fromdocuments, a labeleddataset
was needed. Since no labeled dataset existed, 3,300 sen‑
tences were labeled by two authors according to the four
conϐiguration concepts. 3,032 sentences thatwere agreed
upon by both those labelling were used for training the
model to reduce labeling bias. Fivemachine learning clas‑
siϐiers, logistic regression, naive Bayesian, support vec‑
tormachines, random forest, and extreme gradient boost‑
ing were selected for the learning‑basedmodels, and var‑
ious features such as TF‑IDF‑based word level, character
level, and combination of word and character level, NLP
features, were considered. The optimal traditional ML
models were selected using Bayesian optimization and
average Matthews correction coefϐicient with early stop‑
ping criteria. Breadth‑First‑Search algorithmwas used to
identify the conϐiguration argument and update the KG‑
Conϐig. Accuracies of the LR, NB, SVM, RF, XGB were 0.94,
0.82, 0.88, 0.76, 0.93 respectively. The model’s results
showed that KGSecConϐig is effective in automating the
mitigation of misconϐigurations.
Kosinska and Tobiasz [52] proposed a system, namely,
Kubernetes Anomaly Detector (KAD), for detecting
anomalies in a Kubernetes cluster. KAD uses various
machine learning models to achieve high accuracy. Their
solution differs from other solutions in using different
machine learning models that facilitate detecting differ‑
ent types of anomalies. The KAD system chooses the
appropriate model for detection; thus, different models
can be matched to different data types. These models

are SARIMA, HMM, LSTM and autoencoder. SARIMA
and HMM are derived from traditional time series and
statistical models. In their experiments, they trained
the models on the Numenta Anomaly Benchmark (NAB)
dataset. They selected two types of data streams: the
ϐirst stream is artiϐicially generated, and the second
contains data presenting CPU utilization collected from
AWS Cloudwatch.
The results show that statistical models (SARIMA and
HMM) achieve higher results on the artiϐicial data and
the LSTM and autoencoder perform better on AWS Cloud‑
watch data. Furthermore, the experiments demonstrate
that the real‑time anomaly detection capabilities of the
KAD system can be successfully deployed in a Kubernetes
cluster. However, the KAD system allows anomaly detec‑
tion to be performed on one metric at a time. Hence, for
more complex cases, multivariate models may be needed.
Table 4 provides a concise summary of the surveyed pa‑
pers in the ϐield of intrusion detection, highlighting their
respective advantages and potential limitations. Each
work offers unique strengths in addressing container se‑
curity challenges. For example, some papers leverage
neural networks to analyze ϐile system paths, providing
an additional layer of detection. Others propose innova‑
tive network architectures that effectively capture long‑
term dependencies in sequential data, making them suit‑
able for analyzing and detecting anomalies in time‑series
data. However, it is important to consider the limitations
of these approaches. Some works have a narrower focus,
evaluating their methods primarily in speciϐic scenarios,
which may limit their ability to generalize. Others may
face challenges in detecting certain types of attacks due
to similarities in system call traces. Additionally, there
are limitations related to the applicability of proposed al‑
gorithms to different programming languages or system
architectures, the need for ongoing effort in maintain‑
ing and updating models in evolving systems, and sub‑
jective evaluation of extracted conϐiguration knowledge.
Understanding these advantages and limitations is cru‑
cial for selecting the most appropriate intrusion detection
method for speciϐic container‑based environments.

4.5 Inter‑container security
Deng et al. [54] tackled the secure placement of contain‑
ers in a cloud setting where multiple residents share the
same host. The motivation for their work comes from
the authors’ ϐindings that container placement strategies
do not consider the security of co‑resident containers.
As mentioned in Section 3, container vulnerabilities pose
risks to the container running on the same host as well as
the host system. Deng et al. considered the whole place‑
ment challenge as a series of placement decisions. This
allowed the authors to reframe the problem as an opti‑
mization task. The authors then used Deep Reinforce‑
ment Learning (DRL) with the encoded placement pol‑
icy as the input. DRL is a branch of machine learning
that uses reinforcement learning and deep learning

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 375

Table 4 – Overview of surveyed anomaly detection methods: Key advantages and potential limitations

Work Advantage Limitation/Disadvantage

[43] The use of neural networks to analyze ϐile system
paths provides an additional layer of detection.

The evaluation of the approach is primarily focused on
speciϐic scenarios, such as simultaneous execution of
the normal application and the anomaly (mimicry at‑
tack)

[44] The proposed BiLSTM‑VAE network can effectively
capture long‑term dependencies in sequential data,
making it suitable for analyzing anomalies in time‑
series data.

The provided information does not elaborate on the
diversity and representativeness of the datasets used
for evaluating the proposed approach

[45] The paper explores the feasibility of online anomaly
detection, where sliding windows are used to detect
attacks in real time.

The paper highlights the need to improve the recall
rate of the approach to reduce the number of false neg‑
atives.

[46] The framework utilizes an LSTM autoencoder as the
baseline classiϐier, which has the capability to mem‑
orize and utilize knowledge from previous batches of
system calls.

The classiϐier may face challenges in detecting certain
attacks, such as SQL injection and SQL misbehavior,
where the system call traces are similar except for the
different keywords used.

[47] Extracted key code patterns guide developers in iden‑
tifying vulnerable code segments and improving cod‑
ing practices.

The paper focuses on vulnerabilities in Java‑based
cloud server systems, whichmay limit its applicability
to other programming languages or system architec‑
tures

[48] Integration of a fault injectionmodule facilitates simu‑
lation of system conditions, aiding ML model training
and performance assessment.

The approach assumes that there is only one anoma‑
lous container at the same time within a microservice

[25] Models incorporate GCNs and diffusion processes to
capture dynamic RPC trafϐic patterns, enhancing pre‑
diction accuracy.

Maintaining and updating independent models for
each RPC chain pattern in an evolving microservice
system requires ongoing effort.

[49] Identiϐied malicious data patterns serve as targeted
payloads for effective container platform penetration
testing.

Applicability of the proposed algorithm to other con‑
tainer platforms requires further evaluation andadap‑
tation beyond Docker.

[50] KubAnomaly achieves 96% accuracy in container
anomaly detection, enhancing container security sig‑
niϐicantly.

KubAnomaly agent’s privilege permission and open
port pose potential security risks and vulnerability
similar to the underlying gRPC framework.

[51] KGSecConϐig can automatically detect inconsistencies
in the conϐiguration knowledge by comparing it with
ofϐicial documentation.

Subjectivity in evaluating the quality of extracted con‑
ϐiguration knowledge introduces a potential limita‑
tion.

[52] Ensemble of models enhances accuracy and perfor‑
mance by leveraging diverse strengths in different
data patterns.

KAD’s limitation to univariatemodels restricts its abil‑
ity to simultaneously analyzemultiplemetrics in com‑
plex cases.

principles. Nguyen et al. [55] state that DRL is suited to solve
complex, dynamic, and high‑dimensional cyber‑defense
problems. Deng et al.’s model outputs the placement de‑
cision for the given container at every time step and the
reward function is a formula with a trade‑off between se‑
curity and workload balancing. With their evaluation, the
authors ϐind their model to perform better than existing
strategies in terms of workload balance while keeping se‑
curity in mind.
Li et al. [56] proposed a defensive deception framework
for container‑based clouds. Their approach generates an
adversarial model, decoy placement strategy, and decoy
routing tables using a DRL algorithm. First, they devel‑

oped an adversarialmodel, namely the SystemRisk Graph
(SRG). SRG extracts risks and threats in the container‑
based cloud and includes overall risks and vulnerabilities
from the application to the visualization layer. Secondly,
𝑆𝑅𝐺𝑡, which is the system risk graph of the cloud at time
slot‑𝑡, is sent to input neurons of the DRL agent. The DRL
algorithm generates an ideal decoy placement strategy to
decide optimal topological locations and types on digital
decoys’ assets. Moreover, the performance of the place‑
ment strategy is used as the reward data to train and up‑
date the DRL agent. This feature enables the DRL agent to
evolve with the dynamic cloud. Therefore, their method
is adaptive and fully interacts with the dynamic environ‑

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023376

ment. Lastly, the determined placement strategy and de‑
ceptive routing for the decoy are sent to the orchestra‑
tion platform. As a result, the proposed framework in‑
creases the detection ratio on the random‑walker attack
by 30.69% and the persistent attack by 51.10%.
Using Genetic Algorithm (GA), Kong et al. [57] proposed
a Secure Container Deployment Strategy (SecCDS) to de‑
fend against co‑resident attacks in container clouds. Sec‑
CDS reduces co‑residency by 50% compared with exist‑
ing strategies by coordinating the placement and migra‑
tion of containers to separate attackers and victims on
different Physical Machines (PMs). In their paper, they
deϐine two metrics to describe the deployment and co‑
residency of container clouds. Deployment Matrix (DM)
represents the correspondence between container and
PM, and Coresidency Matrix (CM) describes co‑residency
between different tenants in the cloud. Later, they de‑
velop a deployment strategy by genetic algorithm that can
detect relational aggression between different tenants in
real time and dynamically migrate containers, effectively
preventing co‑residency. In this implementation, a con‑
tainermust only be deployed in a unique position and be‑
long to a real tenant. Thus, the authors offered a genetic
mechanism with altered crossover and mutation opera‑
tions of traditional genetic algorithm by changing some
mutation operation steps and proposed a new individual
learning mechanism. In addition, they utilized Simulated
Annealing (SA) to do a neighborhood search for each indi‑
vidual in GA, which helps the algorithm reach the optimal
global solution.

4.6 Dataset for container security
Chakravarthi et al. [36] used the CloudSim 5.0 environ‑
ment and collected trafϐic data. They augmented the data
using a generative adversarial network. The dataset con‑
tains TCP trafϐic. Since the work focuses on anomaly de‑
tection in scenarios where VM migration occurs, to de‑
tect particularly volume‑based attacks, by analyzing the
traces of TCP streams is beneϐicial since these types of at‑
tacks tend to consume an excessive amount of bandwidth
compared to normal trafϐic. The collected data contains
a wide variety of features, some of which are CPU, net‑
work and memory usages. In addition, they gathered in‑
formation about the status of the network ϐlow. To solve
the data imbalance problem, the authors decided to aug‑
ment data based on the collected samples. For this task,
they selected GAN [36] rather than restricted Boltzmann
machines or variational autoencoders. Creatingnewsam‑
ples becomes a challenging task when the data has many
variables or features. During simulation, they introduced
Net Scan andDoS attacks, but the proposedwork does not
include information about the statistical properties of the
dataset, such as the percentage of data collected for each
metric, which would be useful in understanding the char‑
acteristics of the data.
Cui and Umphress [46] created an open‑source dataset
for the observation of system calls. Scripts for data

generation are available in their public repository. The
work aims to improve upon previous datasets used for
detecting anomalies in computer systems by addressing
some of their limitations. These include focusing on net‑
work traces rather than internal system behaviors, lim‑
ited scope and coverage in system call‑based datasets,
and a lack of clear descriptions of benign behaviors and
indications of system activity. Additionally, at that time,
the authors stated that noneof theprevious datasetswere
explicitly designed for containerized systems. Brute force
login, simple remote shell, malicious Python script, SQL
misbehavior, SQL injection, Docker escape and other se‑
lected malware types were included in the dataset. They
captured7,144,780benign systemcallswhich constitutes
themajority of the dataset. As a limitation, the sample ap‑
plication used in this study was a MySQL database.
Tien et al. [50] used three different datasets to train the
supervised machine learning model for the security sys‑
tem called KubAnomaly. These datasets are private data,
public data called CERT, and real‑world experimental
data to evaluate the system’s accuracy and performance.
First, they used a simple dataset and a complex dataset.
These datasets contain two parts: 80% for training and
20% for testing, and both datasets include normal and ab‑
normal samples. Normal samples include several types of
web services run in containers. They used JMeter to sim‑
ulate user login behavior. The abnormal samples include
two types of attacks aimed at compromising the web ser‑
vice. They used Owasp Zap to simulate a hacker’s attempt
to attack the container and JMeter to simulate a DoS at‑
tack. The complex dataset also contains both normal and
abnormal sample types. The complex dataset includes
other hacker tools such as sqlmap. KubAnomaly achieves
over 98% accuracy with the simple dataset and 96% ac‑
curacy with the complex dataset. CERT contains various
types of log data, inclusive of email and device data, but it
does not include system call log data. This dataset does
not have any labeling; therefore, they used feature ex‑
traction and unsupervised learning to classify abnormal
user behavior. Finally, in order to attract hackers, the au‑
thors developed an online web service with vulnerabili‑
ties andusedKubAnomaly to identify abnormal behaviors
and record the attack events.
In their experiment for the selection of anomaly detec‑
tion model, Kosinska and Tobiasz [52] used the Numenta
Anomaly Benchmark (NAB) dataset to train the models.
They chose two different sorts of data streams: the ϐirst
is artiϐicially generated, and the second contains data pre‑
senting CPU utilization collected from AWS Cloudwatch.

5. CONCLUSION
This survey has provided a comprehensive overview of
container security in 5G environments and the poten‑
tial of machine learning‑based methods to address the
challenges posed by increased connectivity. The integra‑
tion of ML into security systems has the potential to en‑
hance intrusion and malware detection, anomaly detec‑

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 377

tion, attack detection, and inter‑container security within
container clusters, making it a powerful tool in the ϐight
against cyberattacks. The use of ML‑based methods for
container security in 5G environments has the potential
to revolutionize the way we protect and secure our digi‑
tal assets. Further research and development in this ϐield
is needed to fully realize the potential of ML‑based ap‑
proaches for container security in 5G environments.
Future work to advance container security in 5G environ‑
ments based on this survey include addressing the abil‑
ity to interpret and explain, detecting and mitigating bias
in AI models, and conducting real‑world validation. Im‑
proving the ability to interpret and explain involves de‑
veloping techniques to enhance transparency and under‑
standing of AI‑based container security methods. Detect‑
ing and mitigating bias in AI models ensures fairness and
prevents discriminatory outcomes. Real‑world validation
through empirical studies and collaborations with indus‑
try partners evaluates the performance and identiϐies po‑
tential challenges, reϐining the practical implementation.
Pursuing this futureworkwill enhance container security
in 5G environments, fostering robust and trustworthy AI‑
based solutions.
This survey aims to contribute to the growing body of
knowledge in this ϐield and provide a valuable resource
for researchers, practitioners, anddecision‑makerswork‑
ing in container security and 5G networks.

ACKNOWLEDGEMENT
This research has been supported by TUǆ BAGEBIǚP and the
TUǆ BIǚTAK3501CareerDevelopment Programunder grant
number 120E537. However, the entire responsibility of
thepublicationbelongs to theowners of the research. The
ϐinancial support received from TUǆ BIǚTAK does not mean
that the content of the publication is approved in a scien‑
tiϐic sense by TUǆ BIǚTAK.

REFERENCES
[1] Sébastien Vaucher, Rafael Pires, Pascal Felber,

Marcelo Pasin, Valerio Schiavoni, and Christof Fet‑
zer. “SGX‑Aware Container Orchestration for Het‑
erogeneous Clusters”. In: 2018 IEEE 38th Interna‑
tional Conference onDistributedComputing Systems
(ICDCS). July 2018, pp. 730–741. DOI: 10 . 1109 /
ICDCS.2018.00076.

[2] Jacopo Soldani, Damian Andrew Tamburri, and
Willem‑Jan Van Den Heuvel. “The Pains and Gains
of Microservices: A Systematic Grey Literature Re‑
view”. In: Journal of Systems and Software 146 (Dec.
2018), pp. 215–232. ISSN: 0164‑1212. DOI: 10 .
1016 / j . jss . 2018 . 09 . 082. (Visited on
01/14/2023).

[3] Kuljeet Kaur, Tanya Dhand, Neeraj Kumar, and
Sherali Zeadally. “Container‑as‑a‑Service at the
Edge: Trade‑off between Energy Efϐiciency and

Service Availability at Fog Nano Data Centers”. In:
IEEE Wireless Communications 24.3 (June 2017),
pp. 48–56. ISSN: 1558‑0687. DOI: 10.1109/MWC.
2017.1600427.

[4] Mbarka Soualhia and Fetahi Wuhib. “Automated
Traces‑based Anomaly Detection and Root Cause
Analysis in Cloud Platforms”. In: 2022 IEEE Inter‑
national Conference on Cloud Engineering (IC2E).
Sept. 2022, pp. 253–260. DOI: 10 . 1109 /
IC2E55432.2022.00034.

[5] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou.
“Container Security: Issues, Challenges, and the
Road Ahead”. In: IEEE Access 7 (2019), pp. 52976–
52996. ISSN: 2169‑3536. DOI: 10.1109/ACCESS.
2019.2911732.

[6] Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, and
FatimaMohamad Dakalbab. “Machine Learning for
Anomaly Detection: A Systematic Review”. In: IEEE
Access 9 (2021), pp. 78658–78700. ISSN: 2169‑
3536. DOI: 10.1109/ACCESS.2021.3083060. (Vis‑
ited on 12/12/2022).

[7] Pilla Vaishno Mohan, Shriniket Dixit, Amogh
Gyaneshwar, Utkarsh Chadha, Kathiravan Srini‑
vasan, and Jung Taek Seo. “Leveraging Compu‑
tational Intelligence Techniques for Defensive
Deception: A Review, Recent Advances, Open
Problems and Future Directions”. In: Sensors
22.6 (Mar. 2022), p. 2194. ISSN: 1424‑8220. DOI:
10.3390/s22062194. (Visited on 12/12/2022).

[8] Zhiheng Zhong, Minxian Xu, Maria Alejandra
Rodriguez, Chengzhong Xu, and Rajkumar Buyya.
“Machine Learning‑based Orchestration of
Containers: A Taxonomy and Future Direc‑
tions”. In: ACM Computing Surveys 54.10s (Sept.
2022), 217:1–217:35. ISSN: 0360‑0300. DOI:
10.1145/3510415. (Visited on 12/05/2022).

[9] Ann Yi Wong, Eyasu Getahun Chekole, Martin
Ochoa, and Jianying Zhou. Threat Modeling and Se‑
curity Analysis of Containers: A Survey. Nov. 2021.
DOI: 10.48550/arXiv.2111.11475. arXiv: arXiv:
2111.11475. (Visited on 12/10/2022).

[10] René Peinl, Florian Holzschuher, and Florian
Pϐitzer. “Docker Cluster Management for the Cloud
‑ Survey Results and Own Solution”. In: Journal of
Grid Computing 14.2 (June 2016), pp. 265–282.
ISSN: 1572‑9184. DOI: 10 . 1007 / s10723 - 016 -
9366-y. (Visited on 01/14/2023).

[11] Zhuping Zou, Yulai Xie, Kai Huang, Gongming Xu,
Dan Feng, and Darrell Long. “A Docker Container
Anomaly Monitoring System Based on Optimized
Isolation Forest”. In: IEEE Transactions on Cloud
Computing 10.1 (Jan. 2022), pp. 134–145. ISSN:
2168‑7161. DOI: 10.1109/TCC.2019.2935724.

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023378

https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1109/ICDCS.2018.00076
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/MWC.2017.1600427
https://doi.org/10.1109/MWC.2017.1600427
https://doi.org/10.1109/IC2E55432.2022.00034
https://doi.org/10.1109/IC2E55432.2022.00034
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.3390/s22062194
https://doi.org/10.1145/3510415
https://doi.org/10.48550/arXiv.2111.11475
https://arxiv.org/abs/arXiv:2111.11475
https://arxiv.org/abs/arXiv:2111.11475
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1109/TCC.2019.2935724

[12] Mashal Abbas, Shahpar Khan, Abdul Monum, Fa‑
reed Zaffar, Rashid Tahir, David Eyers, Hassaan
Irshad, Ashish Gehani, Vinod Yegneswaran, and
Thomas Pasquier. “PACED: Provenance‑based Au‑
tomated Container Escape Detection”. In: 2022
IEEE International Conference on Cloud Engineer‑
ing (IC2E). Sept. 2022, pp. 261–272. DOI: 10.1109/
IC2E55432.2022.00035.

[13] Robert W. Shirey. Internet Security Glossary, Ver‑
sion 2. Request for Comments RFC 4949. Internet
EngineeringTask Force, Aug. 2007. DOI: 10.17487/
RFC4949. (Visited on 06/20/2022).

[14] William Stallings and Lawrie Brown. Computer
Security: Principles and Practice. Third. Pearson,
2014. ISBN: 978‑0‑13‑377392‑7.

[15] Asbat El Khairi, Marco Caselli, Christian Knierim,
Andreas Peter, and Andrea Continella. “Contextu‑
alizing System Calls in Containers for Anomaly‑
Based Intrusion Detection”. In: Proceedings of
the 2022 on Cloud Computing Security Workshop.
CCSW’22. New York, NY, USA: Association for Com‑
puting Machinery, Nov. 2022, pp. 9–21. ISBN: 978‑
1‑4503‑9875‑6. DOI: 10.1145/3560810.3564266.
(Visited on 12/10/2022).

[16] Siddharth Srinivasan, Akshay Kumar, Manik Maha‑
jan, Dinkar Sitaram, and Sanchika Gupta. “Proba‑
bilistic Real‑Time Intrusion Detection System for
Docker Containers”. In: SSCC. 2018.

[17] Dae‑Ki Kang, D. Fuller, and V. Honavar. “Learning
Classiϐiers for Misuse and Anomaly Detection Us‑
ing a Bag of System Calls Representation”. In: Pro‑
ceedings from the Sixth Annual IEEE SMC Informa‑
tion Assurance Workshop. June 2005, pp. 118–125.
DOI: 10.1109/IAW.2005.1495942.

[18] Amr S. Abed, T. Charles Clancy, and David S. Levy.
“Applying Bag of System Calls for Anomalous Be‑
havior Detection of Applications in Linux Contain‑
ers”. In: 2015 IEEE Globecom Workshops (GC Wk‑
shps). Dec. 2015, pp. 1–5. DOI: 10.1109/GLOCOMW.
2015.7414047.

[19] A. S. Abed, T. Clancy, and David S. Levy. “Intru‑
sionDetection System for Applications Using Linux
Containers”. In: STM (2015). DOI: 10.1007/978-3-
319-24858-5_8.

[20] Amr S. Abed, Mohamed Azab, Charles Clancy, and
Mona S. Kashkoush. “Resilient Intrusion Detec‑
tion System for Cloud Containers”. In: Interna‑
tional Journal of Communication Networks and Dis‑
tributed Systems24.1 (2020), p. 1. ISSN: 1754‑3916,
1754‑3924. DOI: 10.1504/IJCNDS.2020.103857.
(Visited on 12/11/2022).

[21] Martin Max Röhling, Martin Grimmer, Dennis
Kreubel, Jorn Hoffmann, and Bogdan Franczyk.
“Standardized Container Virtualization Approach
for Collecting Host Intrusion Detection Data”. In:
2019 Federated Conference on Computer Science
and Information Systems (FedCSIS). Sept. 2019,
pp. 459–463. DOI: 10.15439/2019F212.

[22] Yigit Sever, Goktug Ekinci, AdnanHarunDogan, Bu‑
gra Alparslan, Abdurrahman Said Gurbuz, Vahab
Jabrayilov, and Pelin Angin. “An Empirical Analy‑
sis of IDS Approaches in Container Security”. In:
2022 International Workshop on Secure and Re‑
liable Microservices and Containers (SRMC). Sept.
2022, pp. 18–26. DOI: 10.1109/SRMC57347.2022.
00007.

[23] Rupesh Raj Karn, Prabhakar Kudva, Hai Huang,
Sahil Suneja, and Ibrahim M. Elfadel. “Cryptomin‑
ing Detection in Container Clouds Using System
Calls and Explainable Machine Learning”. In: IEEE
Transactions on Parallel and Distributed Systems
32.3 (Mar. 2021), pp. 674–691. ISSN: 1558‑2183.
DOI: 10.1109/TPDS.2020.3029088.

[24] Alfonso Iacovazzi and Shahid Raza. “Ensemble of
Random and Isolation Forests for Graph‑Based In‑
trusion Detection in Containers”. In: 2022 IEEE In‑
ternational Conference on Cyber Security and Re‑
silience (CSR). July 2022, pp. 30–37. DOI: 10.1109/
CSR54599.2022.9850307.

[25] Jiyu Chen, Heqing Huang, and Hao Chen. “In‑
former: Irregular Trafϐic Detection for Container‑
izedMicroservices RPC in theRealWorld”. In:High‑
Conϔidence Computing 2.2 (June 2022), p. 100050.
ISSN: 2667‑2952. DOI: 10 . 1016 / j . hcc . 2022 .
100050. (Visited on 06/05/2022).

[26] Aparna Tomar, Diksha Jeena, Preeti Mishra, and
Rahul Bisht. “Docker Security: A Threat Model, At‑
tack Taxonomy and Real‑Time Attack Scenario of
DoS”. In: 2020 10th International Conference on
Cloud Computing, Data Science & Engineering (Con‑
ϔluence). Jan. 2020, pp. 150–155. DOI: 10 . 1109 /
Confluence47617.2020.9058115.

[27] Wonjun Lee and Mohammad Nadim. “Kernel‑
Level Rootkits Features to Train Learning Mod‑
els Against Namespace Attacks on Containers”. In:
2020 7th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2020 6th
IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom). Aug. 2020, pp. 50–
55. DOI: 10.1109/CSCloud-EdgeCom49738.2020.
00018.

[28] Aleksa Sarai. Oss‑Sec: CVE‑2018‑15664: Docker (All
Versions) Is Vulnerable to a Symlink‑Race Attack.
https://seclists.org/oss‑sec/2019/q2/131. May
2019. (Visited on 01/16/2023).

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 379

https://doi.org/10.1109/IC2E55432.2022.00035
https://doi.org/10.1109/IC2E55432.2022.00035
https://doi.org/10.17487/RFC4949
https://doi.org/10.17487/RFC4949
https://doi.org/10.1145/3560810.3564266
https://doi.org/10.1109/IAW.2005.1495942
https://doi.org/10.1109/GLOCOMW.2015.7414047
https://doi.org/10.1109/GLOCOMW.2015.7414047
https://doi.org/10.1007/978-3-319-24858-5_8
https://doi.org/10.1007/978-3-319-24858-5_8
https://doi.org/10.1504/IJCNDS.2020.103857
https://doi.org/10.15439/2019F212
https://doi.org/10.1109/SRMC57347.2022.00007
https://doi.org/10.1109/SRMC57347.2022.00007
https://doi.org/10.1109/TPDS.2020.3029088
https://doi.org/10.1109/CSR54599.2022.9850307
https://doi.org/10.1109/CSR54599.2022.9850307
https://doi.org/10.1016/j.hcc.2022.100050
https://doi.org/10.1016/j.hcc.2022.100050
https://doi.org/10.1109/Confluence47617.2020.9058115
https://doi.org/10.1109/Confluence47617.2020.9058115
https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00018
https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00018

[29] Aleksa Sarai. Oss‑Security ‑ CVE‑2019‑5736: Runc
Container Breakout (All Versions). Feb. 2019. (Vis‑
ited on 01/16/2023).

[30] Francesco Minna, Fabio Massacci, and Katja Tuma.
“Towards a Security Stress‑Test for Cloud Conϐig‑
urations”. In: 2022 IEEE 15th International Con‑
ference on Cloud Computing (CLOUD). July 2022,
pp. 191–196. DOI: 10.1109/CLOUD55607.2022.
00038.

[31] Lu Zhang, Reginald Cushing, Cees de Laat, and
Paola Grosso. “A Real‑Time Intrusion Detection
System Based on OC‑SVM for Containerized Ap‑
plications”. In: 2021 IEEE 24th International Con‑
ference on Computational Science and Engineering
(CSE). Shenyang, China: IEEE, Oct. 2021, pp. 138–
145. ISBN: 978‑1‑66541‑660‑3. DOI: 10 . 1109 /
CSE53436.2021.00029. (Visited on 01/09/2023).

[32] José Flora, Paulo Gonçalves, and Nuno Antunes.
“Using Attack Injection to Evaluate Intrusion De‑
tection Effectiveness in Container‑based Systems”.
In:2020 IEEE25th Paciϔic Rim International Sympo‑
sium on Dependable Computing (PRDC). Dec. 2020,
pp. 60–69. DOI: 10.1109/PRDC50213.2020.00017.

[33] Marcos Cavalcanti, Pedro Inacio, and Mario Freire.
“Performance Evaluation of Container‑Level
Anomaly‑Based Intrusion Detection Systems for
Multi‑Tenant Applications UsingMachine Learning
Algorithms”. In: The 16th International Conference
on Availability, Reliability and Security. ARES 2021.
New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 1–9. ISBN: 978‑1‑4503‑
9051‑4. DOI: 10.1145/3465481.3470066. (Visited
on 05/08/2022).

[34] James Pope, Francesco Raimondo, Vijay Ku‑
mar, Ryan McConville, Rob Piechocki, George
Oikonomou, Thomas Pasquier, Bo Luo, Dan
Howarth, Ioannis Mavromatis, Pietro Carnelli,
Adrian Sanchez‑Mompo, Theodoros Spyri‑
dopoulos, and Aftab Khan. “Container Escape
Detection for Edge Devices”. In: Proceedings of
the 19th ACM Conference on Embedded Networked
Sensor Systems. Coimbra Portugal: ACM, Nov.
2021, pp. 532–536. ISBN: 978‑1‑4503‑9097‑2.
DOI: 10 . 1145 / 3485730 . 3494114. (Visited on
12/11/2022).

[35] Yulong Wang, Qixu Wang, Xingshu Chen, Dajiang
Chen, Xiaojie Fang, Mingyong Yin, and Ning Zhang.
“ContainerGuard: A Real‑Time Attack Detection
System in Container‑Based Big Data Platform”. In:
IEEE Transactions on Industrial Informatics 18.5
(May 2022), pp. 3327–3336. ISSN: 1941‑0050. DOI:
10.1109/TII.2020.3047416.

[36] S. Chakravarthi, R. Kannan, V. Natarajan, and Xiao‑
Zhi Gao. “Deep Learning Based Intrusion Detec‑
tion in Cloud Services for Resilience Management”.
In: Computers, Materials & Continua 71.3 (2022),

pp. 5117–5133. ISSN: 1546‑2218, 1546‑2218. DOI:
10 . 32604 / cmc . 2022 . 022351. (Visited on
12/11/2022).

[37] Jingfei Shen, Fanping Zeng, Weikang Zhang, Yu‑
fan Tao, and Shengkun Tao. “A Clustered Learn‑
ing Framework for Host Based Intrusion Detec‑
tion in Container Environment”. In: 2022 IEEE In‑
ternational Conference on Communications Work‑
shops (ICC Workshops). Seoul, Korea, Republic of:
IEEE, May 2022, pp. 409–414. ISBN: 978‑1‑66542‑
671‑8. DOI: 10.1109/ICCWorkshops53468.2022.
9814620. (Visited on 12/11/2022).

[38] Martin Grimmer, Martin Max Röhling, D Kreusel,
and Simon Ganz. “A Modern and Sophisticated
Host Based Intrusion Detection Data Set”. In: IT‑
Sicherheit als Voraussetzung für eine erfolgreiche
Digitalisierung (2019), pp. 135–145.

[39] Yulong Wang, Qixu Wang, Xue Qin, Xingshu Chen,
Bangzhou Xin, and Run Yang. “DockerWatch: A
Two‑Phase Hybrid Detection of Malware Using
Various Static Features in Container Cloud”. In: Soft
Computing (Oct. 2022). ISSN: 1432‑7643, 1433‑
7479. DOI: 10.1007/s00500-022-07546-2. (Vis‑
ited on 12/07/2022).

[40] Yuhang Lin, Olufogorehan Tunde‑Onadele, Xiao‑
hui Gu, Jingzhu He, and Hugo Latapie. “SHIL: Self‑
Supervised Hybrid Learning for Security Attack
Detection in Containerized Applications”. In: 2022
IEEE International Conference on Autonomic Com‑
puting and Self‑Organizing Systems (ACSOS). Sept.
2022, pp. 41–50. DOI: 10 . 1109 / ACSOS55765 .
2022.00022.

[41] Yuhang Lin, Olufogorehan Tunde‑Onadele, and Xi‑
aohui Gu. “CDL: Classiϐied Distributed Learning for
Detecting Security Attacks in Containerized Appli‑
cations”. In: Annual Computer Security Applications
Conference. ACSAC ’20. NewYork, NY, USA: Associa‑
tion for Computing Machinery, Dec. 2020, pp. 179–
188. ISBN: 978‑1‑4503‑8858‑0. DOI: 10 . 1145 /
3427228.3427236. (Visited on 12/10/2022).

[42] Tin Kam Ho. “Random Decision Forests”. In: Pro‑
ceedings of the Third International Conference on
Document Analysis and Recognition (Volume 1) ‑
Volume 1. ICDAR ’95. USA: IEEE Computer Society,
Aug. 1995, p. 278. ISBN: 978‑0‑8186‑7128‑9. (Vis‑
ited on 01/14/2023).

[43] Holger Gantikow, Tom Zohner, and Christoph Re‑
ich. “Container Anomaly Detection Using Neu‑
ral Networks Analyzing System Calls”. In: 2020
28th Euromicro International Conference on Par‑
allel, Distributed and Network‑Based Processing
(PDP). Västerås, Sweden: IEEE, Mar. 2020, pp. 408–
412. ISBN: 978‑1‑72816‑582‑0. DOI: 10 . 1109 /
PDP50117.2020.00069. (Visited on 12/07/2022).

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023380

https://doi.org/10.1109/CLOUD55607.2022.00038
https://doi.org/10.1109/CLOUD55607.2022.00038
https://doi.org/10.1109/CSE53436.2021.00029
https://doi.org/10.1109/CSE53436.2021.00029
https://doi.org/10.1109/PRDC50213.2020.00017
https://doi.org/10.1145/3465481.3470066
https://doi.org/10.1145/3485730.3494114
https://doi.org/10.1109/TII.2020.3047416
https://doi.org/10.32604/cmc.2022.022351
https://doi.org/10.1109/ICCWorkshops53468.2022.9814620
https://doi.org/10.1109/ICCWorkshops53468.2022.9814620
https://doi.org/10.1007/s00500-022-07546-2
https://doi.org/10.1109/ACSOS55765.2022.00022
https://doi.org/10.1109/ACSOS55765.2022.00022
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1109/PDP50117.2020.00069
https://doi.org/10.1109/PDP50117.2020.00069

[44] Yulong Wang, Xingshu Chen, Qixu Wang, Run Yang,
and Bangzhou Xin. “Unsupervised Anomaly Detec‑
tion for Container Cloud Via BILSTM‑Based Varia‑
tional Auto‑Encoder”. In: ICASSP 2022 ‑ 2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). May 2022, pp. 3024–
3028. DOI: 10 . 1109 / ICASSP43922 . 2022 .
9747341.

[45] Gabriel R. Castanhel, Tiago Heinrich, Fabrı́cio
Ceschin, and Carlos Maziero. “Taking a Peek: An
Evaluation of Anomaly Detection Using System
Calls for Containers”. In: 2021 IEEE Symposium on
Computers and Communications (ISCC). Sept. 2021,
pp. 1–6. DOI: 10.1109/ISCC53001.2021.9631251.

[46] Pinchen Cui and David Umphress. “Towards Unsu‑
pervised Introspection of Containerized Applica‑
tion”. In: 2020 the 10th International Conference on
Communication and Network Security. ICCNS 2020.
New York, NY, USA: Association for Computing Ma‑
chinery, Mar. 2021, pp. 42–51. ISBN: 978‑1‑4503‑
8903‑7. DOI: 10.1145/3442520.3442530. (Visited
on 12/12/2022).

[47] Olufogorehan Tunde‑Onadele, Jingzhu He, Ting
Dai, and Xiaohui Gu. “A Study on Container Vulner‑
ability Exploit Detection”. In: 2019 IEEE Interna‑
tional Conference on Cloud Engineering (IC2E). June
2019, pp. 121–127. DOI: 10 . 1109 / IC2E . 2019 .
00026.

[48] Qingfeng Du, Tiandi Xie, and Yu He. “Anomaly
Detection and Diagnosis for Container‑based Mi‑
croservices with Performance Monitoring”. In: In‑
ternational Conference on Algorithms and Architec‑
tures for Parallel Processing (2018).

[49] Supriya Kamthania. “A Novel Deep Learning RBM
Based Algorithm for Securing Containers”. In: 2019
IEEE International WIE Conference on Electrical
and Computer Engineering (WIECON‑ECE). Nov.
2019, pp. 1–7. DOI: 10.1109/WIECON-ECE48653.
2019.9019985.

[50] Chin‑Wei Tien, Tse‑Yung Huang, Chia‑Wei Tien,
Ting‑Chun Huang, and Sy‑Yen Kuo. “KubAnomaly:
Anomaly Detection for the Docker Orchestration
PlatformwithNeural NetworkApproaches”. In:En‑
gineering Reports 1.5 (2019), e12080. ISSN: 2577‑
8196. DOI: 10 . 1002 / eng2 . 12080. (Visited on
05/08/2022).

[51] Mubin Ul Haque, M. Mehdi Kholoosi, and M. Ali
Babar. “KGSecConϐig: A Knowledge Graph Based
Approach for Secured Container Orchestrator Con‑
ϐiguration”. In: 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineer‑
ing (SANER). Honolulu, HI, USA: IEEE, Mar. 2022,
pp. 420–431. ISBN: 978‑1‑66543‑786‑8. DOI: 10 .
1109 / SANER53432 . 2022 . 00057. (Visited on
01/09/2023).

[52] Joanna Kosinska and Maciej Tobiasz. “Detection of
Cluster Anomalies With ML Techniques”. In: IEEE
Access 10 (2022), pp. 110742–110753. ISSN: 2169‑
3536. DOI: 10.1109/ACCESS.2022.3216080. (Vis‑
ited on 12/30/2022).

[53] Martin Ester, Hans‑Peter Kriegel, Jörg Sander, and
Xiaowei Xu. “A Density‑Based Algorithm for Dis‑
covering Clusters in Large Spatial Databases with
Noise”. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Min‑
ing. KDD’96. Portland, Oregon: AAAI Press, 1996,
pp. 226–231.

[54] Qiqing Deng, Xinrui Tan, Jing Yang, Chao Zheng,
Liming Wang, and Zhen Xu. “A Secure Container
Placement Strategy Using Deep Reinforcement
Learning in Cloud”. In: 2022 IEEE 25th Interna‑
tional Conference on Computer Supported Cooper‑
ative Work in Design (CSCWD). Hangzhou, China:
IEEE, May 2022, pp. 1299–1304. ISBN: 978‑1‑
66540‑527‑0. DOI: 10.1109/CSCWD54268.2022.
9776226. (Visited on 12/12/2022).

[55] Thanh Thi Nguyen and Vijay Janapa Reddi. “Deep
Reinforcement Learning for Cyber Security”. In:
IEEE Transactions on Neural Networks and Learn‑
ing Systems (2021), pp. 1–17. ISSN: 2162‑2388. DOI:
10.1109/TNNLS.2021.3121870.

[56] Huanruo Li, Yunfei Guo, Penghao Sun, YawenWang,
and ShuminHuo. “An Optimal Defensive Deception
Framework for the Container‑based Cloud with
Deep Reinforcement Learning”. In: IET Information
Security 16.3 (May 2022), pp. 178–192. ISSN: 1751‑
8709, 1751‑8717. DOI:10.1049/ise2.12050. (Vis‑
ited on 12/11/2022).

[57] Tong Kong, Liming Wang, Duohe Ma, Zhen Xu,
Qian Yang, and Kai Chen. “A Secure Container De‑
ployment Strategy by Genetic Algorithm to Defend
against Co‑Resident Attacks in Cloud Computing”.
In: 2019 IEEE21st International Conference onHigh
Performance Computing andCommunications; IEEE
17th International Conference on Smart City; IEEE
5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). Zhangjiajie, China:
IEEE, Aug. 2019, pp. 1825–1832. ISBN: 978‑1‑
72812‑058‑4. DOI: 10 . 1109 / HPCC / SmartCity /
DSS.2019.00251. (Visited on 12/14/2022).

Aktolga et al.: AI-driven container security approaches for 5G and beyond: A survey

©International Telecommunication Union, 2023 381

https://doi.org/10.1109/ICASSP43922.2022.9747341
https://doi.org/10.1109/ICASSP43922.2022.9747341
https://doi.org/10.1109/ISCC53001.2021.9631251
https://doi.org/10.1145/3442520.3442530
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/IC2E.2019.00026
https://doi.org/10.1109/WIECON-ECE48653.2019.9019985
https://doi.org/10.1109/WIECON-ECE48653.2019.9019985
https://doi.org/10.1002/eng2.12080
https://doi.org/10.1109/SANER53432.2022.00057
https://doi.org/10.1109/SANER53432.2022.00057
https://doi.org/10.1109/ACCESS.2022.3216080
https://doi.org/10.1109/CSCWD54268.2022.9776226
https://doi.org/10.1109/CSCWD54268.2022.9776226
https://doi.org/10.1109/TNNLS.2021.3121870
https://doi.org/10.1049/ise2.12050
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00251
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00251

AUTHORS
Ilter Taha Aktolga received his
B.S. degree in computer engi‑
neering at Middle East Techni‑
cal University (METU) in 2021.
He is currently a graduate stu‑
dent pursuing a master’s de‑
gree at METU. He has gained re‑
search and industry experience
through various positions, in‑
cluding working as an under‑
graduate researcher at KOVAN
Robotics Research Laboratory

at METU with a TUBITAK scholarship from June 2019 to
June 2020 and as a cloud developer at Arcelik Global from
May 2021 to August 2021. Currently, he is working as a
software engineer at ASELSAN. His research interests in‑
clude the ϐields of machine learning, container security,
and backenddevelopmentwith an emphasis onmicroser‑
vices.

Elif Sena Kuru is an undergrad‑
uate student pursuing her bach‑
elors degree in computer en‑
gineering at Middle East Tech‑
nical University (METU) since
2019. Her research interests
include cloud security and ma‑
chine learning.

also working as a research assistant since 2020. His re‑
search interests include cloud security with a strong fo‑
cus on container security, user and Internet privacy and
distributed systems. He is a member of Wireless Systems,
Networks and Cybersecurity Laboratory, METU.

Pelin Angin (Member, IEEE) re‑
ceived a B.S. degree in computer
engineering at Bilkent Univer‑
sity, in 2007, and a Ph.D. de‑
gree in computer science from
Purdue University, USA, in 2013.
From 2014 to 2016, she worked
as a visiting assistant professor
and a postdoctoral researcher at

Purdue University. She is currently an associate profes‑
sor in computer engineering at Middle East Technical Uni‑
versity. Her research interests include the ϐields of cloud
computing, the IoT security, distributed systems, 5G net‑
works, data mining, and blockchain. She is among the
founding members of the Systems Security Research Lab‑
oratory and an afϐiliate of the Wireless Systems, Networks
and Cybersecurity Laboratory, METU.

Yigit Sever received a B.S. de‑
gree in computer engineering at
TED University, Turkey, in 2016,
and a M.S. degree in computer
engineering at Hacettepe Uni‑
versity, Turkey, in 2019. He is
currently a Ph.D. candidate in
computer engineering at Mid‑
dle East Technical University
(METU), Turkey, where he is

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 2, June 2023

©International Telecommunication Union, 2023382

	AI‑DRIVEN CONTAINER SECURITY APPROACHES FOR 5G AND BEYOND:A SURVEY
	1. INTRODUCTION
	2. PRELIMINARIES
	2.1 Intrusion Detection Systems (IDS)
	2.2 System calls

	3. CYBERATTACKS ON CONTAINERS
	4. MACHINE LEARNING APPROACHES FORCONTAINER SECURITY
	4.1 Intrusion detection
	4.2 Malware detection
	4.3 Attack detection
	4.4 Anomaly detection
	4.5 Inter‑container security
	4.6 Dataset for container security

	5. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHORS

