An Empirical Analysis of IDS Approaches in Container Security

Yigit Sever, Goktug Ekinci, Adnan Dogan, Bugra Alparslan, Said Gurbuz, Vahab Jabrayilov, Pelin Angin

Middle East Technical University

Intrusion Detection Systems

IDS Approaches

Network-based IDS

• sensor on data "on the wire"

🛋 🔳 🖉 🐵 🖪 🖺 🗙 🙆 🍳 < > > K » 🛄 📰 🖽 🎞 🏦

Apply a display filter ... <Ctrl-/>

	-					
N0.	Time	Source	Destination	Protocol	Lengtr	Info
33	5.967347847	192.168.1.58	136.243.191.22	тер	66	[TCP ACKed unseen segment] 42634 22
34	7.072240622	192.168.1.58	136.243.191.22	TCP	66	[TCP Keep-Alive] [TCP ACKed unseen se
35	7.120746736	136.243.191.22	192.168.1.58	тер	66	[TCP Previous segment not captured] 2
36	7.617594883	192.168.1.58	1.1.1.1	DNS	79 5	Standard query 0x982a A api.open-noti
37	7.617601192	192.168.1.58	1.1.1.1	DNS	79.5	Standard query 0xd928 AAAA api.open-n
38	7.631338418	1.1.1.1	192.168.1.58	DNS	95.5	Standard query response 0x982a A ap1.
39	7.631338597	1.1.1.1	192.168.1.58	DNS	150 1	Standard query response 0xd928 AAAA a
40	7.631591420	192.168.1.58	138.68.39.196	TCP	74 1	59306 - 80 [SYN] Seq=0 Win=64240 Len=
41	7.835660762	138.68.39.196	192.168.1.58	TCP	74.1	80 59306 [SYN, ACK] Seq=0 Ack=1 Win
42	7.835693992	192.168.1.58	138.68.39.196	TCP	66 1	59306 80 [ACK] Seq=1 Ack=1 Win=6425
43	7.835759121	192.168.1.58	138.68.39.196	HTTP	161 4	GET /iss-now.json HTTP/1.1
44	8.039867029	138.68.39.196	192.168.1.58	тср	66 1	80 - 59306 [ACK] Seq=1 Ack=96 Win=289
45	8.040314814	138.68.39.196	192.168.1.58	HTTP/J	367 1	HTTP/1.1 200 OK , JavaScript Object N
46	8.040336190	192.168.1.58	138.68.39.196	TCP	66 1	59306 - 80 [ACK] Seq=96 Ack=302 Win=6
47	8.040498124	192.168.1.58	138.68.39.196	TCP	66 5	59306 80 [FIN, ACK] Seq=96 Ack=302
48	8.244751744	138.68.39.196	192.168.1.58	TCP	66 1	80 59306 [FIN, ACK] Seq=302 Ack=97
49	8.244776407	192.168.1.58	138.68.39.196	TCP	66 1	59306 - 80 [ACK] Seq=97 ACk=303 Min=6
50	9.991283616	192.168.1.58	140.82.121.6	TCP	74 :	36248 443 [SYN] Seq=0 Win=64240 Len
51	10.044640465	140.82.121.6	192.168.1.58	TCP	74 /	443 36248 [SYN, ACK] Seq=0 Ack=1 Wi
52	10.044670031	192.168.1.58	140.82.121.6	TCP	66 :	36248 - 443 [ACK] Seq=1 Ack=1 Min=642
53	10.049124734	192.168.1.58	140.82.121.6	TLSv1.3	583 (Client Hello
54	10.103279339	140.82.121.6	192.168.1.58	TLSV1.3	1490 1	Server Hello, Change Cipher Spec, App
55	10.103301389	192.168.1.58	140.82.121.6	TCP	66 :	36248 - 443 [ACK] Seq=518 ACk=1425 Wi
56	10.103515339	140.82.121.6	192.168.1.58	TLSv1.3	1454 /	Application Data, Application Data, A
57	10.103521851	192.168.1.58	140.82.121.6	TCP	66 3	36248 443 [ACK] Seq=518 Ack=2813 Wi
58	10.104914937	192.168.1.58	140.82.121.6	TLSV1.3	130 4	Change Cipher Spec, Application Data
59	10.104984399	192.168.1.58	140.82.121.6	TLSv1.3	161 /	Application Data, Application Data
60	10.105154145	192.168.1.58	140.82.121.6	TLSv1.3	246 /	Application Data, Application Data

Host-based IDS

• sensor on machine behaviour

50067	22:20:56.305073049	12 sudo (3494636.3494636) > rt_sigaction	
50068	22:20:56.305073141	12 sudo (3494636.3494636) < rt_sigaction	
50069	22:20:56.305073274	14 <na> (<na>.0) > switch next=3492401 pgft_maj=0 pgft_min=0 vm</na></na>	_siz
50070	22:20:56.305073335	12 sudo (3494636.3494636) > rt_sigaction	
50072	22:20:56.305073426	12 sudo (3494636.3494636) < rt_sigaction	
50073	22:20:56.305073517	12 sudo (3494636.3494636) > read fd=9(<f>/dev/ptmx) size=65536</f>	
50075	22:20:56.305074065	12 sudo (3494636.3494636) < read res=191 data=2530 22:20:56.298	2426
0m.34	94132) < .[0		
50076	22:20:56.305074238	12 sudo (3494636.3494636) > rt_sigaction	
50077	22:20:56.305074314	12 sudo (3494636.3494636) < rt_sigaction	
50078	22:20:56.305074448	12 sudo (3494636.3494636) > rt_sigprocmask	
50079	22:20:56.305074552	12 sudo (3494636.3494636) < rt_sigprocmask	
50080	22:20:56.305074626	7 <na> (<na>.0) > switch next=3420972 pgft_maj=0 pgft_min=0 vm_</na></na>	size
50081	22:20:56.305074642	14 <na> (<na>.3492401) > switch next=0 pgft_maj=0 pgft_min=0 vm</na></na>	_siz
50082	22:20:56.305074649	12 sudo (3494636.3494636) > rt_sigprocmask	
50083	22:20:56.305074722	12 sudo (3494636.3494636) < rt_sigprocmask	
50084	22:20:56.305074928	12 sudo (3494636.3494636) > ppoll fds=11:u1 3:p1 8:f4 8:f1 9:f1	tim
50085	22:20:56.305075014	0 sshd (3494132.3494132) < brk res=5592803E6000 vm_size=17764 v	m_rs
50086	22:20:56.305075085	7 <na> (<na>.3420972) > switch next=0 pgft_maj=0 pgft_min=0 vm_</na></na>	size
50088	22:20:56.305075455	12 sudo (3494636.3494636) < ppoll res=2 fds=8:f4 9:f1	
50089	22:20:56.305075662	0 sshd (3494132.3494132) > read fd=10(<f>/dev/ptmx) size=32768</f>	
50090	22:20:56.305075694	12 sudo (3494636.3494636) > rt_sigaction	
50091	22:20:56.305075782	12 sudo (3494636.3494636) < rt_sigaction	
50092	22:20:56.305075873	12 sudo (3494636.3494636) > write fd=8(<f>/dev/tty) size=191</f>	
50094	22:20:56.305076665	12 sudo (3494636.3494636) < write res=191 data=2530 22:20:56.29	18242
00m.34	¥94132) < .[0		
50095	22:20:56.305076854	12 sudo (3494636.3494636) > rt_sigaction	
50096	22:20:56.305076931	12 sudo (3494636.3494636) < rt_sigaction	
50097	22:20:56.305076994	0 sshd (3494132.3494132) < read res=728 data=2523 22:20:56.2982	4166
0m.34	94636) < .[
50098	22:20:56.305077078	7 <na> (<na>.0) > switch next=3420972 pgft_maj=0 pgft_min=0 vm_</na></na>	size
50099	22:20:56.305077124	12 sudo (3494636.3494636) > rt_sigaction	
50101	22:20:56.305077211	12 sudo (3494636.3494636) < rt_sigaction	
50102	22:20:56.305077304	12 sudo (3494636.3494636) > read fd=9(<f>/dev/ptmx) size=65536</f>	
50103	22:20:56.305077545	0 sshd (3494132.3494132) > rt_sigprocmask	
50104	22:20:56.305077654	0 sshd (3494132.3494132) < rt_sigprocmask	

Containers vs. Virtual Machines

Virtual Machine	Virtual Machine	Virtual Machine			
Арр А	Арр В	Арр С			
Guest Operating System	Guest Operating System	Guest Operating System			
Hypervisor					
Infrastructure					

Existing IDS Literature?

Fig. 10. Docker and OS Recall-Precision curves for epoch size and detection threshold impact analysis.

"The experiments in the OS deployment led to worse results than for Docker and LXC, indicating that besides the practical advantages, there is also an added effectiveness due to a more precise definition of the monitoring surface possible in the containers ..." [FGA20]

Microservices

Monolithic application

Exposed services/APIs

Microservices application

Figure from Microservices architecture: IBM's POV

Microservices architecture uses software containerization

Literature Survey

Author	Monitor
Srinivasan et al. [Sri+18]	strace
Abed et al. [ACL15]	strace
Cavalcanti et al. [CIF21]	Sysdig
Flora et al. [FGA20]	Sysdig
Tien et al. [Tie+19]	Sysdig
Tunde-Onadele et al. [Tun+19]	Sysdig
Röhling et al. [Röh+19]	Sysdig

Another Look at the Literature Survey

Author	Application	Benign	Malicious
Srinivasan et al.	DVWA	unknown	sqlmap
Abed et al.	MySQL	mysqlslap	sqlmap
Cavalcanti et al.	MySQL	TPC-C	TPC-C
Flora et al.	MariaDB	TPC-C	exploit-db
Röhling et al.	MariaDB	various tools	various tools

• The literature is using syscalls for container IDS

• Targets are mostly limited to databases and old workloads

• Compare syscall monitoring with network based monitoring

• Do it using recent applications and attacks

Environment Setup

Experiment Pipeline

CWEs and CVEs

- CWE: Nature of the vulnerability
- CVE: Vulnerability in action

CVE	CWE
CVE-2019-16662	CWE-78
CVE-2019-19509	CWE-78
CVE-2020-10220	CWE-89

- CWE-78: OS Command Injection
- CWE-89: SQL Command Injection

Considerations

- Use well-known CVEs and attack tools
- Craft realistic user traffic, make sure that the generated user traffic does not follow any statistical distribution
- Do not consider environment-specific variables as features, e.g. IP addresses [VSO17; Sha+17].

Vulnerable Application

rConfig -	Configuration Management
Login Page	
Enter Username & P	assword to login
Password	
Remember me on this	
Forgot my password!	d' Login

Bag-of-System-Calls (BoSC)

- Frequency of syscalls in a period of time
- Input is list of syscalls during attacks and regular user traffic
- At every timestep, we get a fixed vector where the syscall at position n has been encountered x times
- 332 syscalls in total

Network Flow

• Feature extraction method is updated fork of CICFlowMeter [ERJ21]

- Input is network packets from tcpdump during attacks and regular user traffic
- Yields features such as Packet Length Variance, Average Segment Size ...

We generated a dataset with malicious and benign traffic

Compared syscall monitoring & network flow monitoring

Size of the Dataset

• The network flow dataset includes 279340 benign flows and 4532 malicious flows

• The BoSC dataset includes 4965 benign BoSC vectors and 134 malicious BoSC vectors

Base Rate Fallacy

Marking everything as benign would give 98.4% and 97.4% accuracy respectively!

Results - Network Flow

Model	ТР	FP	Precision	Recall	Label
REPTree	1.000	0.002	1.000	1.000	B
	0.998	0.000	0.999	0.998	M
R. Tree	1.000	0.003	1.000	1.000	B
	0.997	0.000	0.999	0.997	M
R. Forest	1.000	0.002	1.000	1.000	B
	0.998	0.000	1.000	0.998	M
SMO	1.000	0.013	1.000	1.000	B
	0.987	0.000	0.998	0.987	M

Results - BoSC

Model	ТР	FP	Precision	Recall	Label
REPTree	0.998	0.007	1.000	0.998	B
	0.993	0.002	0.937	0.993	M
R. Tree	0.998	0.030	0.999	0.998	B
	0.970	0.002	0.942	0.970	M
R. Forest	0.999	0.007	1.000	0.999	B
	0.993	0.001	0.964	0.993	M
SMO	0.998	0.000	1.000	0.998	B
	1.000	0.002	0.944	1.000	M

Comparison

	BoSC		
	а	b	Actual
REPTree	4956	9	a = 0
	1	133	b = 1
R. Tree	4957	8	a = 0
	4	130	b = 1
R. Forest	4960	5	a = 0
	1	133	b = 1
SMO	4957	8	a = 0
	0	134	b = 1

	Network Flow				
	a b				
REPTree	279336	4	a = 0		
	8	4524	b = 1		
R. Tree	279332	8	a = 0		
	13	4519	b = 1		
R. Forest	279338	2	a = 0		
	9	4523	b = 1		
SMO	279333	7	a = 0		
	60	4472	b = 1		

Conclusion & Future Work

• Network flow performed better across the board

- More attacks with better variation
- More applications
- Anomaly detection rather than classification

Yigit Sever yigitsever.com

and Cybersecurity Lab

Thank you :)

References I

- [FGA20] José Flora et al. "Using Attack Injection to Evaluate Intrusion Detection Effectiveness in Container-based Systems". In: 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC). Dec. 2020, pp. 60–69.
- [Sri+18] Siddharth Srinivasan et al. "Probabilistic Real-Time Intrusion Detection System for Docker Containers". In: *SSCC*. 2018.
- [ACL15] A. S. Abed et al. "Intrusion Detection System for Applications Using Linux Containers". In: *STM* (2015).

References II

- [CIF21] Marcos Cavalcanti et al. "Performance Evaluation of Container-Level Anomaly-Based Intrusion Detection Systems for Multi-Tenant Applications Using Machine Learning Algorithms". In: *The 16th International Conference on Availability, Reliability and Security*. ARES 2021. New York, NY, USA: Association for Computing Machinery, Aug. 2021, pp. 1–9. ISBN: 978-1-4503-9051-4.
- [Tie+19] Chin-Wei Tien et al. "KubAnomaly: Anomaly Detection for the Docker Orchestration Platform with Neural Network Approaches". In: *Engineering Reports* 1.5 (2019), e12080. ISSN: 2577-8196.

References III

- [Tun+19] Olufogorehan Tunde-Onadele et al. "A Study on Container Vulnerability Exploit Detection". In: *2019 IEEE International Conference on Cloud Engineering (IC2E)*. June 2019, pp. 121–127.
- [Röh+19] Martin Max Röhling et al. "Standardized Container Virtualization Approach for Collecting Host Intrusion Detection Data". In: 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). Sept. 2019, pp. 459–463.
- [VSO17] Eduardo K. Viegas et al. "Toward a Reliable Anomaly-Based Intrusion Detection in Real-World Environments". In: *Computer Networks* 127 (Nov. 2017), pp. 200–216. ISSN: 1389-1286.

References IV

- [Sha+17] Iman Sharafaldin et al. "Towards a Reliable Intrusion Detection Benchmark Dataset". In: *Software Networking* 2017.1 (2017), pp. 177–200. ISSN: 2445-9739.
- [ERJ21] Gints Engelen et al. "Troubleshooting an Intrusion Detection Dataset: The CICIDS2017 Case Study". In: 2021 IEEE Security and Privacy Workshops (SPW). San Francisco, CA, USA: IEEE, May 2021, pp. 7–12. ISBN: 978-1-66543-732-5.