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Intrusion Detection Systems



IDS Approaches

Network-based IDS
• sensor on data “on the wire”

Host-based IDS
• sensor on machine behaviour



Containers vs. Virtual Machines



Existing IDS Literature?

“The experiments in the OS
deployment led to worse results
than for Docker and LXC, indicating
that besides the practical
advantages, there is also an added
effectiveness due to a more precise
definition of the monitoring
surface possible in the containers
. . . ” [FGA20]
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Microservices

Figure from Microservices architecture: IBM’s POV

Microservices architecture
uses software

containerization



Literature Survey

Author Monitor
Srinivasan et al. [Sri+18] strace
Abed et al. [ACL15] strace
Cavalcanti et al. [CIF21] Sysdig
Flora et al. [FGA20] Sysdig
Tien et al. [Tie+19] Sysdig
Tunde-Onadele et al. [Tun+19] Sysdig
Röhling et al. [Röh+19] Sysdig



Another Look at the Literature Survey

Author Application Benign Malicious
Srinivasan et al. DVWA unknown sqlmap
Abed et al. MySQL mysqlslap sqlmap
Cavalcanti et al. MySQL TPC-C TPC-C
Flora et al. MariaDB TPC-C exploit-db
Röhling et al. MariaDB various tools various tools
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Recap

• The literature is using syscalls for container IDS

• Targets are mostly limited to databases and old workloads



Objectives

• Compare syscall monitoring with network based monitoring

• Do it using recent applications and attacks
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Environment Setup



Experiment Pipeline



CWEs and CVEs

• CWE: Nature of the vulnerability
• CVE: Vulnerability in action

CVE CWE
CVE-2019-16662 CWE-78
CVE-2019-19509 CWE-78
CVE-2020-10220 CWE-89

• CWE-78: OS Command Injection
• CWE-89: SQL Command Injection



Considerations

• Use well-known CVEs and attack tools

• Craft realistic user traffic, make sure that the generated user traffic
does not follow any statistical distribution

• Do not consider environment-specific variables as features, e.g. IP
addresses [VSO17; Sha+17].



Vulnerable Application



Bag-of-System-Calls (BoSC)

• Frequency of syscalls in a
period of time

• Input is list of syscalls during
attacks and regular user traffic

• At every timestep, we get a
fixed vector where the
syscall at position n has been
encountered x times

• 332 syscalls in total



Network Flow

• Feature extraction method is updated fork of CICFlowMeter [ERJ21]

• Input is network packets from tcpdump during attacks and regular
user traffic

• Yields features such as Packet Length Variance, Average Segment
Size . . .
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Recap

We generated a dataset with malicious and
benign traffic

Compared syscall monitoring & network
flow monitoring



Size of the Dataset

• The network flow dataset includes 279340 benign flows and 4532
malicious flows

• The BoSC dataset includes 4965 benign BoSC vectors and 134
malicious BoSC vectors



Base Rate Fallacy

Marking everything as benign
would give 98.4% and 97.4%
accuracy respectively!



Results - Network Flow

Model TP FP Precision Recall Label

REPTree 1.000 0.002 1.000 1.000 B
0.998 0.000 0.999 0.998 M

R. Tree 1.000 0.003 1.000 1.000 B
0.997 0.000 0.999 0.997 M

R. Forest 1.000 0.002 1.000 1.000 B
0.998 0.000 1.000 0.998 M

SMO 1.000 0.013 1.000 1.000 B
0.987 0.000 0.998 0.987 M



Results - BoSC

Model TP FP Precision Recall Label

REPTree 0.998 0.007 1.000 0.998 B
0.993 0.002 0.937 0.993 M

R. Tree 0.998 0.030 0.999 0.998 B
0.970 0.002 0.942 0.970 M

R. Forest 0.999 0.007 1.000 0.999 B
0.993 0.001 0.964 0.993 M

SMO 0.998 0.000 1.000 0.998 B
1.000 0.002 0.944 1.000 M



Comparison

BoSC
a b Actual

REPTree 4956 9 a = 0
1 133 b = 1

R. Tree 4957 8 a = 0
4 130 b = 1

R. Forest 4960 5 a = 0
1 133 b = 1

SMO 4957 8 a = 0
0 134 b = 1

Network Flow
a b Actual

REPTree 279336 4 a = 0
8 4524 b = 1

R. Tree 279332 8 a = 0
13 4519 b = 1

R. Forest 279338 2 a = 0
9 4523 b = 1

SMO 279333 7 a = 0
60 4472 b = 1



Conclusion & Future Work

• Network flow performed better across the board

• More attacks with better variation

• More applications

• Anomaly detection rather than classification



Questions?

Yigit Sever
yigitsever.com

Thank you :)

yigitsever.com
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